University of Washington Math 523A HOMEWORK ASSIGNMENT 2

DUE BY: May 11

Answer at least 3 of the following questions:

1. Let $\{X_n\}_{n\geq 0}$ be a martingale with $\mathbb{E}X_0 = 0$ and $\mathbb{E}X_n^2 < \infty$. Show that

$$\mathbb{P}\left(\max_{1 \le k \le n} X_k > r\right) \le \frac{\mathbb{E}[X_n^2]}{\mathbb{E}[X_n^2] + r^2}$$

- 2. Let $\{S_n\}$ be a simple random walk on \mathbb{Z} with $S_0 = 0$.
 - (a) For which $\alpha > 0$ can you find a stopping time τ such that

$$\mathbb{E}\tau^{\alpha} < \infty \quad \text{yet} \quad \mathbb{E}S_{\tau} \neq 0$$

(b) For which $\alpha > 0$ can you prove that

$$\mathbb{E}\tau^{\alpha} < \infty \quad \Longrightarrow \quad \mathbb{E}S_{\tau} = 0$$

Hint: try bounding $\mathbb{E} \max k \leq \tau |S_k|$.

- 3. In a sequence of fair coin tosses, let τ_w be the number of tosses until w appears, so $\tau_{01} = 5$ for the sequence 11001.
 - (a) For 0 < z < 1, determine $g(z) = \mathbb{E} z^{\tau_{00}}$.
 - (b) For 0 < z < 1, determine $\tilde{g}(z) = \mathbb{E} z^{\tau_{010}}$.
- 4. Solve any problem you skipped from the previous HW.

Hint: use symmetry.