University of Washington Math 523A HOMEWORK ASSIGNMENT 1

DUE BY: April 20

Answer at least 3 of the following questions:

- 1. A sequence of random variables (A_i) is called *previsible* with respect to a filtration (\mathcal{F}_i) if A_i is \mathcal{F}_{i-1} -measurable for each *i*.
 - (i) Show that for any sequence of random variables (X_t) , adapted to a filtration (\mathcal{F}_t) and satisfying $\mathbb{E}|X_t| < \infty$ for all t, there is a unique decomposition of the form

$$X_t = M_t + A_t ,$$

where (M_t) is a martingale and (A_t) a previsible sequence (both w.r.t. (\mathcal{F}_t)) with $A_0 = 0$.

- (ii) Show that (X_t) is a sub-martingale iff the above sequence (A_t) is non-decreasing with probability 1.
- 2. Let P_1, \ldots, P_n be uniformly and independently chosen points in the $m \times m$ square $[0, m]^2$ with $m = \sqrt{n}$, and let $X = |\bigcup_i B_{P_i}(1)|$, where $B_P(r)$ denotes a ball of radius r about the point P. Show that there exists some fixed c > 0 such that

$$\mathbb{P}(|X - \mathbb{E}X| > \varepsilon \sqrt{n}) \le \exp(-c\varepsilon^2) \text{ for any } \varepsilon > 0.$$

- 3. Let $S_t = S_0 + \sum_{j=1}^t X_j$, where $X_j \sim \begin{cases} 1 & p \\ -1 & q = 1-p \end{cases}$ are i.i.d. random variables with $p > \frac{1}{2}$. Let \mathbb{P}_k and \mathbb{E}_k denote the probability and expectation resp. for the process started at $S_0 = k$.
 - (i) Find λ such that $e^{\lambda S_t}$ is a martingale.
 - (ii) Calculate $\mathbb{P}_k(\tau_n < \tau_0)$.
 - (iii) Calculate $\mathbb{E}_0(\tau_1)$.
 - (iv) Find $\mathbb{E}_0(\tau_1)$ for $p = \frac{1}{2}$.
- 4. Let S_0, S_1 , be simple random walk on \mathbb{Z} with $S_0 = 0$. Fix $a \in (0, 1)$.
 - (i) Show that there is a unique $\lambda > 0$ such that $\cosh(\lambda) = e^{\lambda a}$.
 - (ii) For $a \in (0, 1)$ and b > 0, define

$$\tau \stackrel{\scriptscriptstyle \Delta}{=} \inf\{t \ge 1 : S_t \ge at + b\},\$$

with the convention that $\tau = \infty$ if the set under the infimum is empty. Show that

$$e^{-\lambda(b+1)} \leq \mathbb{P}(\tau < \infty) \leq e^{-\lambda b}$$
.

5*. Let G be a graph whose chromatic number is $\chi(G) = 600$, and let S be a random uniformly chosen subset of of its vertices. Show that the induced subgraph of G on S, denoted by $G|_S$, is not 200-colorable except with probability at most 2^{-10} :

$$\mathbb{P}\left(\chi(G|_S) \le 200\right) < 2^{-10}$$
 .