The non-random nature of random limit points

K. Bruce Erickson

2/97

Theorem 1 If for a sequence \(\{Z_t, t = 1, 2, \ldots\} \) of random variables on a complete probability space \((\Omega, \mathcal{F}, P)\) with values in a compact metric space \((E, d)\) we have

\[
(0) \quad P\{Z_t \in V \ i. \ o.\} = 0 \text{ or } 1 \text{ for every open set } V,
\]

and if

\[
G = \{x : P\{d(Z_t, x) < \varepsilon \ i. \ o.\} = 1, \ \forall \ \varepsilon > 0\},
\]

then \(G \neq \emptyset \) and

\[
(1) \quad P\{\omega : A(\omega) = G\} = 1,
\]

where

\[
A(\omega) = \{x : \liminf_{t \to \infty} d(Z_t(\omega), x) = 0\}
\]

\[
= \bigcap_{n=1}^{\infty} \{Z_t(\omega) : t \geq n\}.
\]

1 Proof.

First \(G \) is closed. For if \(G \) is non-empty and if \(y \) is a limit point of \(G \) which we may suppose is not isolated, then for any neighborhood \(V \) of \(y \) we can find a neighborhood \(V_0 \) of some point of \(G \) which is contained in \(V \). But then \(P\{Z_t \in V \ i. \ o.\} \geq P\{Z_t \in V_0 \ i. \ o.\} = 1 \). Since \(V \) is any neighborhood of \(y \) the result follows.

Next we show \(G \) is non-empty. Without loss of generality we may suppose that the diameter of \(E \) is 1. Let \(N(x, r) \) denote the open ball centered at \(x \) with radius \(r \). Since \(E \) is compact, we can cover \(E \) with a finite number
of balls of radius $1/2$, and since Z_t stays in E for all t, we can find at least one of these balls of radius $1/2$ that will be entered infinitely often with positive probability and therefore with probability 1 by (1). Call this ball $V_1 = N(z_1, 1/2)$. Cover the compact set V_1 with a finite number of balls of radius $1/4$ each having a non-empty intersection with V_1. Then Z_t must enter at least one of these, i. o., with probability 1. Write it as $V_2 = N(z_2, 1/4)$. We continue inductively. At the kth stage we get a ball of radius $1/2^k$ of the form $V_k = N(z_k, 1/2^k)$ where $z_k \in V_{k-1}$.

Also at each stage we can find a null set of paths, say Ξ_k, such that if $\omega \notin \Xi_k$, then $Z_t(\omega) \in V_k$ i. o.. The sequence of centers of these balls, $\{z_k\}$, clearly form a Cauchy sequence. Let $z = \lim_k z_k$. If $r > 0$ then $V_k \subset N(z, r)$ for all k sufficiently large. If $\omega \notin \cup_k \Xi_k$, then $Z_t(\omega)$ will enter all V_k infinitely often and therefore will enter $N(z, r)$ infinitely often. In as much as $\cup_k \Xi_k$ is a null set, z must be in G by definition of G.

Let $z_1^n, \ldots, z_{k(n)}^n$ be points in G such that every point of G is at a distance strictly less than $1/2^n$ of one of these points. This can be done for every n because G is compact. Also put

$$O_n = \bigcup_{i=1}^{k_n} N(z_i^n, 1/2^n).$$

Then $G \subset O_n$ for every n; moreover $\min(d(x, y) : x \in G, y \in O_n) > 0$. By definition of G for each $y \in O_n$ there is a $r = r(y)$ such that $P\{Z_t \in N(y, r) \text{ i. o.}\} = 0$, or, put another way,

$$P\{Z_t \notin N(y, r) \text{ for all } t \geq \ell \text{ for some } \ell\} = 1$$

The sets $\{N(y, r(y))\}_{y \in O_n}$ make a covering of O_n, so there exists $y_1^n, \ldots, y_{m_n}^n$ in O_n such that

$$O_n^c \subset \bigcup_{i=1}^{m_n} N(y_i^n, r_i^n), \quad r_i^n = r(y_i^n).$$

Define

$$\Omega_n = \{w : Z_t(\omega) \in N(z_i^n, 2^{-n}) \text{ i. o. } \forall i = 1, \ldots, k_n\}$$

$$\Lambda_\ell = \{\omega : Z_t(\omega) \notin N(y_i^n, r_i^n) \forall t \geq \ell \forall i = 1, \ldots, m_n\} \quad \Lambda = \bigcup_{\ell=1}^\infty \Lambda_\ell$$

Then $P(\Omega_n \cap \Lambda) = 1$ for every n, hence, if we put

$$\Omega_\infty = \bigcap_{n \geq 1} \Omega_n \Lambda,$$
then \(P(\Omega_\infty) = 1 \). Finally let us define

\[\tilde{\Omega}_r = \{ w : Z_t(w) \in N(z, r) \text{ i. o. for every } z \in G \} \].

Clearly \(\Omega_\infty \subset \tilde{\Omega}_r \) for every \(r > 0 \). Indeed \(\Omega_n \subset \tilde{\Omega}_r \) as soon as \(1/2^n < r/2 \). It follows that \(P(\tilde{\Omega}_{0+}) = 1 \) where

\[\tilde{\Omega}_{0+} = \bigcap_{r > 0, \text{ r rational}} \tilde{\Omega}_r. \]

Recalling the definition of \(A(\omega) \) it is now clear that

\[\omega \in \Omega_\infty \implies A(\omega) \subset G \]
\[\omega \in \tilde{\Omega}_{0+} \implies G \subset A(\omega). \]

These implications and \(P\{\Omega_\infty \triangle \tilde{\Omega}_{0+}\} = 0 \) yield (1).

For a proof of a similar result for normalized sums of independent random variables, see Theorem 1 on page 1174 of the paper by H. Kesten, (970), *The limit points of normalized random walk. Ann. Math. Statist.* 41.