(1) Given $\sum_{l=1}^{\infty} a_{l}$ suppose there is $r \varepsilon R, \quad 0 \leq r<1$ and $M \in N$ such that $\forall u \geqslant M \quad\left|a_{u}\right|^{l / c}<r$ Prove $\sum_{L=1}^{\infty} a_{l}$ converges

Proof: by essumption $\quad \forall l \geq M \quad\left|a_{c}\right| \leq r^{l}$
therefore $\sum_{i=1}^{\infty}\left|a_{u}\right|$ converges by comperison with the geometric series $\sum_{l=1}^{\infty} r^{l}$, which converges since $0 \leq r<1$ Therefore $\sum_{i=1}^{\infty} a_{l}$ converges absolutely
, vote that here we are assuming the more general version of the comparison test only requiring $\forall L \geqslant M \quad 0 \leqslant a_{c} \leqslant b$ and not $\forall l \geq 1 \quad 0 \leq a_{c} \leq b_{c}$. See problem (2) be bo for a proof that "the first M terms" of a series do not affect the convergence of a series.
(2) $\forall M \in N \sum_{L=1}^{\infty} a_{L}$ woncerges $\Leftrightarrow \sum_{L=M}^{\infty} a_{L}$ woncerges

Proof: Let $S_{n}=\sum_{L=1}^{n} a_{c}, t_{n}=\sum_{c=M}^{n} a_{c} \quad($ for $n>M)$
, then $S_{n}=\underbrace{a_{1}+a_{2}+\cdots+a_{m_{-}}}_{\text {this is just }}+t_{n}$ a constant C
so we cen wite $S_{n}=C$ ton $\quad($ for $n>M)$
then if $\sum_{c=1}^{\infty} a_{c}$ converges $\quad \lim _{n \rightarrow \infty} S_{n}=\alpha$ jor some $\alpha \in \mathbb{R}$ ι
$\infty \lim _{n \rightarrow+\infty} t_{n}=\lim _{n \rightarrow \infty}\left(S_{n}-C\right)=\alpha-C \in R$
so fry converges so $\sum_{l=M}^{\infty} Q_{c}$ converges
viceverse if $\sum_{i=\pi}^{\nabla} Q_{L}$ converges then
$\lim _{n \rightarrow t \rightarrow} t_{n}=\beta \quad$ far some $\beta \in R \quad$ so $\operatorname{lime}_{n-\infty t} s_{n}=$
$=\lim _{n \rightarrow t_{\infty}^{\infty}}\left(t_{n}+c\right)=\beta+c \quad \infty \quad\left\{s_{n}\right\}$ Converges
$s_{0} \sum_{i=1}^{n} a_{c}$ converges

Cintuticely $\sum_{i=1}^{\infty} a_{c}=a_{1}+\cdots+a_{\mu-1}+\sum_{c=M}^{\infty} a_{l}$, but we went to be careful in expleivig whet it means when one of the series diverges, in thy rose we mean the other diverges too)

