Math 327 - Spring 2014 Midterm Exam

1. (8 points)

(a) Complete the definition.

i. A sequence $\{a_n\}$ converges to a real number a if \ldots

VER ZREN VIZM LQn-QLLE

ii. A sequence $\{a_n\}$ is Cauchy if...

(b) State the Cauchy Criterion for Convergence.

We did	not ner	me it, it	rs the	th tlet
says	a sequence	- Converges	iff it	is Cauchy

(c) Give an example of a sequence that is not Cauchy. Justify your answer.

MATH 327 SPRING 2014 MIDTERM SOLUTIONS

2. (4 points each)

(a) FALSE

Counter-example: The sequence $\{1 - \frac{1}{n}\}$ is strictly increasing since, for all natural numbers n,

$$0 < n < n+1 \Rightarrow \frac{1}{n} > \frac{1}{n+1} \Rightarrow -\frac{1}{n} < -\frac{1}{n+1} \Rightarrow 1 - \frac{1}{n} < 1 - \frac{1}{n+1}$$

By the limit properties,

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right) = 1.$$

So, $\{1 - \frac{1}{n}\}$ converges and therefore has a convergent subsequence (itself). (Alternatively, $\{1 - \frac{1}{n}\}$ converges and is therefore bounded and has a convergent subsequence by the Bolzano-Weierstrass Theorem.)

(b) TRUE

Proof: Suppose $\{a_n\}$ is an increasing sequence of negative terms and $\{b_n\}$ is a decreasing sequence of non-negative terms. Then, for each $n \in \mathbb{N}$, $a_n \leq a_{n+1} < 0$, which implies $0 < -a_{n+1} \leq -a_n$, and $0 \leq b_{n+1} \leq b_n$. So, for each $n \in \mathbb{N}$, $0 \leq -a_{n+1}b_{n+1} \leq -a_nb_n$, which implies $a_nb_n \leq a_{n+1}b_{n+1} \leq 0$. Thus, $\{a_nb_n\}$ is increasing.

(c) TRUE

Proof: Suppose $n \in \mathbb{N}$ and a and b are real numbers such that $a \ge b \ge 0$. Then for each integer k such that $0 \le k \le n-1$, $a^{n-1-k} \ge b^{n-1-k}$. We then have, by the Difference of Powers formula:

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{n-1-k} b^{k} \ge (a - b) \sum_{k=0}^{n-1} b^{n-1} = (a - b) n b^{n-1}.$$

(d) TRUE

Proof: Suppose $x, y \in \mathbb{R}$ and x < y. By the Rational Density Theorem, there is a rational number q such that x < q < y. Again by the Rational Density Theorem, there are rational numbers q_1 and q_2 such that $x < q_1 < q < q_2 < y$. Therefore, there are at lease three rational numbers in the interval (x, y).

3. (a) (2 points)

 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n-1}{4n+1} = \lim_{n \to \infty} \frac{1-\frac{1}{n}}{4+\frac{1}{n}} = \frac{1}{4}$ (by the Quotient and Sum Properties).

(b) (4 points)

Proof: Choose an arbitrary $\epsilon > 0$. For every $n \in \mathbb{N}$,

$$\left|a_n - \frac{1}{4}\right| = \left|\frac{n-1}{4n+1} - \frac{1}{4}\right| = \frac{5}{16n+4} < \frac{5}{16n} < \frac{1}{n}.$$

By the Archimedean Property, there is an $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$. Suppose $n \ge N$. Then

$$\left|a_n - \frac{1}{4}\right| < \frac{1}{n} \le \frac{1}{N} < \epsilon$$

(c) (4 points) Claim: $\{a_n\}$ is monotonically increasing. **Proof:** For each $n \in \mathbb{N}$,

$$a_{n+1} - a_n = \frac{n}{4n+5} - \frac{n-1}{4n+1} = \frac{5}{(4n+5)(4n+1)} \ge 0$$

So, $a_{n+1} \ge a_n$ and $\{a_n\}$ is increasing.

- (d) i. (6 points) Claim: inf(S) = 0 and sup(S) = ¹/₄.
 Proof: For each n ∈ N, a_n ≥ 0 since n − 1 ≥ 0 and 4n + 1 > 0. So, 0 is a lower bound for S. Since 0 = a₁, if l is a lower bound for S, then l ≤ 0. Thus 0 = inf(S). Since {a_n} converges, it is bounded. Since it's also monotone, by the Monotone Convergence Theorem, sup(S) = lim_{n→∞} a_n = ¹/₄.
 - ii. (2 points) No. Suppose there is an $n \in \mathbb{N}$ such that $\frac{n-1}{4n+1} = \frac{1}{4}$. Then 4n-4 = 4n+1, which implies -4 = 1, a contradiction. Thus, $\sup(S) = \frac{1}{4} \notin S$ and S has no maximum.
- (e) **Proof:** Suppose $\{a_n\}$ converges to a. There is an $N \in \mathbb{N}$ such that, if $n \geq N$, then $|a_n a| < 1$. For $n \geq N$,

$$|a_n| = |a_n - a + a| \le |a_n + a| + |a| < 1 + |a|.$$

Let $M = \max\{1 + |a|, |a_1|, |a_2|, ..., |a_{N-1}\}$. Then for all $n \in \mathbb{N}, |a_n| \leq M$ and thus $\{a_n\}$ is bounded.