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Math 327 — Spring 2014 Midterm Exam 1

1. (8 points)

(a) Complete the definition.

i. A sequence {an} converges to a real number a if ...

ii. A sequence {an} is Cauchy if...

(b) State the Cauchy Criterion for Convergence.

(c) Give an example of a sequence that is not Cauchy. Justify your answer.
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2. (4 points each)

(a) FALSE

Counter-example: The sequence
�
1� 1

n

 
is strictly increasing since, for all natural

numbers n,

0 < n < n+ 1 ) 1

n

>

1

n+ 1
) � 1

n

< � 1

n+ 1
) 1� 1

n

< 1� 1

n+ 1
.

By the limit properties,

lim
n!1

✓
1� 1

n

◆
= 1.

So,
�
1� 1

n

 
converges and therefore has a convergent subsequence (itself). (Alterna-

tively,
�
1� 1

n

 
converges and is therefore bounded and has a convergent subsequence

by the Bolzano-Weierstrass Theorem.)

(b) TRUE

Proof: Suppose {an} is an increasing sequence of negative terms and {bn} is a decreasing
sequence of non-negative terms. Then, for each n 2 N, an  an+1 < 0, which implies
0 < �an+1  �an, and 0  bn+1  bn. So, for each n 2 N, 0  �an+1bn+1  �anbn,
which implies anbn  an+1bn+1  0. Thus, {anbn} is increasing. ⇤

(c) TRUE

Proof: Suppose n 2 N and a and b are real numbers such that a � b � 0. Then for each
integer k such that 0  k  n � 1, an�1�k � b

n�1�k. We then have, by the Di↵erence
of Powers formula:

a

n � b

n = (a� b)
n�1X

k=0

a

n�1�k
b

k � (a� b)
n�1X

k=0

b

n�1 = (a� b)nbn�1
.

⇤
(d) TRUE

Proof: Suppose x, y 2 R and x < y. By the Rational Density Theorem, there is a
rational number q such that x < q < y. Again by the Rational Density Theorem, there
are rational numbers q1 and q2 such that x < q1 < q < q2 < y. Therefore, there are at
lease three rational numbers in the interval (x, y). ⇤

3. (a) (2 points)

lim
n!1

an = lim
n!1

n� 1

4n+ 1
= lim

n!1

1� 1
n

4 + 1
n

=
1

4
(by the Quotient and Sum Properties).
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(b) (4 points)

Proof: Choose an arbitrary ✏ > 0. For every n 2 N,
����an � 1

4

���� =
����
n� 1

4n+ 1
� 1

4

���� =
5

16n+ 4
<

5

16n
<

1

n

.

By the Archimedean Property, there is an N 2 N such that 1
N < ✏. Suppose n � N .

Then ����an � 1

4

���� <
1

n

 1

N

< ✏.

⇤
(c) (4 points) Claim: {an} is monotonically increasing.

Proof: For each n 2 N,

an+1 � an =
n

4n+ 5
� n� 1

4n+ 1
=

5

(4n+ 5)(4n+ 1)
� 0.

So, an+1 � an and {an} is increasing. ⇤
(d) i. (6 points) Claim: inf(S) = 0 and sup(S) = 1

4 .

Proof: For each n 2 N, an � 0 since n � 1 � 0 and 4n + 1 > 0 . So, 0 is a lower
bound for S. Since 0 = a1, if ` is a lower bound for S, then `  0. Thus 0 = inf(S).
Since {an} converges, it is bounded. Since it’s also monotone, by the Monotone

Convergence Theorem, sup(S) = lim
n!1

an =
1

4
. ⇤

ii. (2 points) No. Suppose there is an n 2 N such that n�1
4n+1 = 1

4 . Then 4n�4 = 4n+1,

which implies �4 = 1, a contradiction. Thus, sup(S) = 1
4 /2 S and S has no

maximum.

(e) Proof: Suppose {an} converges to a. There is an N 2 N such that, if n � N , then
|an � a| < 1. For n � N ,

|an| = |an � a+ a|  |an + a|+ |a| < 1 + |a|.

Let M = max{1 + |a|, |a1|, |a2|, ..., |aN�1}. Then for all n 2 N, |an|  M and thus {an}
is bounded. ⇤


