1. (8 points)
(a) Complete the definition.
i. A sequence $\left\{a_{n}\right\}$ converges to a real number a if ...
$\forall \varepsilon>0 \quad \exists M \varepsilon N \quad \forall n \geq M \quad\left|Q_{n}-a\right|<\varepsilon$
ii. A sequence $\left\{a_{n}\right\}$ is Cauchy if...
$\forall \varepsilon>0 \quad \exists M_{\varepsilon} N \quad \forall m, n \geq M \quad\left|a_{m}-e_{n}\right|<\varepsilon$
(b) State the Cauchy Criterion for Convergence.

We did not neme it, it rs the th that says a sequence converges ff it is cauchy
(c) Give an example of a sequence that is not Cauchy. Justify your answer.

Any margent sequence
2. (4 points each)
(a) FALSE

Counter-example: The sequence $\left\{1-\frac{1}{n}\right\}$ is strictly increasing since, for all natural numbers n,

$$
0<n<n+1 \Rightarrow \frac{1}{n}>\frac{1}{n+1} \Rightarrow-\frac{1}{n}<-\frac{1}{n+1} \Rightarrow 1-\frac{1}{n}<1-\frac{1}{n+1}
$$

By the limit properties,

$$
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)=1
$$

So, $\left\{1-\frac{1}{n}\right\}$ converges and therefore has a convergent subsequence (itself). (Alternatively, $\left\{1-\frac{1}{n}\right\}$ converges and is therefore bounded and has a convergent subsequence by the Bolzano-Weierstrass Theorem.)
(b) TRUE

Proof: Suppose $\left\{a_{n}\right\}$ is an increasing sequence of negative terms and $\left\{b_{n}\right\}$ is a decreasing sequence of non-negative terms. Then, for each $n \in \mathbb{N}, a_{n} \leq a_{n+1}<0$, which implies $0<-a_{n+1} \leq-a_{n}$, and $0 \leq b_{n+1} \leq b_{n}$. So, for each $n \in \mathbb{N}, 0 \leq-a_{n+1} b_{n+1} \leq-a_{n} b_{n}$, which implies $a_{n} b_{n} \leq a_{n+1} b_{n+1} \leq 0$. Thus, $\left\{a_{n} b_{n}\right\}$ is increasing.
(c) TRUE

Proof: Suppose $n \in \mathbb{N}$ and a and b are real numbers such that $a \geq b \geq 0$. Then for each integer k such that $0 \leq k \leq n-1, a^{n-1-k} \geq b^{n-1-k}$. We then have, by the Difference of Powers formula:

$$
a^{n}-b^{n}=(a-b) \sum_{k=0}^{n-1} a^{n-1-k} b^{k} \geq(a-b) \sum_{k=0}^{n-1} b^{n-1}=(a-b) n b^{n-1}
$$

(d) TRUE

Proof: Suppose $x, y \in \mathbb{R}$ and $x<y$. By the Rational Density Theorem, there is a rational number q such that $x<q<y$. Again by the Rational Density Theorem, there are rational numbers q_{1} and q_{2} such that $x<q_{1}<q<q_{2}<y$. Therefore, there are at lease three rational numbers in the interval (x, y).
3. (a) (2 points)
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n-1}{4 n+1}=\lim _{n \rightarrow \infty} \frac{1-\frac{1}{n}}{4+\frac{1}{n}}=\frac{1}{4}$ (by the Quotient and Sum Properties).
(b) (4 points)

Proof: Choose an arbitrary $\epsilon>0$. For every $n \in \mathbb{N}$,

$$
\left|a_{n}-\frac{1}{4}\right|=\left|\frac{n-1}{4 n+1}-\frac{1}{4}\right|=\frac{5}{16 n+4}<\frac{5}{16 n}<\frac{1}{n}
$$

By the Archimedean Property, there is an $N \in \mathbb{N}$ such that $\frac{1}{N}<\epsilon$. Suppose $n \geq N$. Then

$$
\left|a_{n}-\frac{1}{4}\right|<\frac{1}{n} \leq \frac{1}{N}<\epsilon .
$$

(c) (4 points) Claim: $\left\{a_{n}\right\}$ is monotonically increasing.

Proof: For each $n \in \mathbb{N}$,

$$
a_{n+1}-a_{n}=\frac{n}{4 n+5}-\frac{n-1}{4 n+1}=\frac{5}{(4 n+5)(4 n+1)} \geq 0
$$

So, $a_{n+1} \geq a_{n}$ and $\left\{a_{n}\right\}$ is increasing.
(d) i. (6 points) Claim: $\inf (S)=0$ and $\sup (S)=\frac{1}{4}$.

Proof: For each $n \in \mathbb{N}, a_{n} \geq 0$ since $n-1 \geq 0$ and $4 n+1>0$. So, 0 is a lower bound for S. Since $0=a_{1}$, if ℓ is a lower bound for S, then $\ell \leq 0$. Thus $0=\inf (S)$. Since $\left\{a_{n}\right\}$ converges, it is bounded. Since it's also monotone, by the Monotone Convergence Theorem, $\sup (S)=\lim _{n \rightarrow \infty} a_{n}=\frac{1}{4}$.
ii. (2 points) No. Suppose there is an $n \in \mathbb{N}$ such that $\frac{n-1}{4 n+1}=\frac{1}{4}$. Then $4 n-4=4 n+1$, which implies $-4=1$, a contradiction. Thus, $\sup (S)=\frac{1}{4} \notin S$ and S has no maximum.
(e) Proof: Suppose $\left\{a_{n}\right\}$ converges to a. There is an $N \in \mathbb{N}$ such that, if $n \geq N$, then $\left|a_{n}-a\right|<1$. For $n \geq N$,

$$
\left|a_{n}\right|=\left|a_{n}-a+a\right| \leq\left|a_{n}+a\right|+|a|<1+|a| .
$$

Let $M=\max \left\{1+|a|,\left|a_{1}\right|,\left|a_{2}\right|, \ldots, \mid a_{N-1}\right\}$. Then for all $n \in \mathbb{N},\left|a_{n}\right| \leq M$ and thus $\left\{a_{n}\right\}$ is bounded.

