Math 327, Section B, Midterm I, February 1, 2016

Name

1. Use the $\epsilon-N$ definition of convergence to show that the sequence $\left(\frac{2 n-5}{n+1}\right)_{n \in \mathbf{N}}$ converges. First, you have to find the limit to use in your proof.
2. Give examples of the following. If there is no such sequence or set, explain why not.
(a) A decreasing, but convergent sequence.
(b) A bounded and increasing sequence.
(c) A closed, but not compact set.
(d) A compact, but not closed set.
(e) A monotone, bounded, divergent sequence.
(f) A divergent sequence with a convergent subsequence.
3. Let $S=\left\{(-1)^{n}+\frac{1}{n}: n \in \mathbf{N}\right\}$. Find the supremum and infimum of the set S. Is S closed? Is S compact? Prove your claims.
4. Prove that the limit of a sequence is unique, i.e. you cannot have $a_{n} \rightarrow a$ and $a_{n} \rightarrow b$ with $a \neq b$.
