## Mathematics 327 Final Exam

 Name: $\qquad$June 8, 2009
Instructions: This is a closed book exam, no notes or calculators allowed. Please turn off all cell phones, pagers, etc. Provide reasons for all of your answers.

1. (10 points) For which integers $a$ does the following series converge? For which integers $a$ does it diverge?

$$
\sum_{n=1}^{\infty} \frac{n^{n}}{n!} a^{n}
$$

Solution: Use the ratio test. Write the $n$th term as $u_{n}$; then the ratio $\left|u_{n+1} / u_{n}\right|$ is

$$
\left|\frac{u_{n+1}}{u_{n}}\right|=\frac{(n+1)^{n+1}|a|^{n+1}}{(n+1)!} \frac{n!}{n^{n}|a|^{n}}=\frac{(n+1)^{n}|a|}{n^{n}}=\left(1+\frac{1}{n}\right)^{n}|a| .
$$

As $n$ goes to infinity, this approaches $e|a|$. Therefore if $|a|<1 / e$, this ratio is less than 1 and the series converges. If $|a|>1 / e$, it diverges. More explicitly, the series converges if $a=0$, and it diverges for all integers $a$ with $|a| \geq 1$.
2. (10 points) Abel's test says:

Suppose that $\sum_{n=0}^{\infty} a_{n}$ is convergent, and that $b_{n}>0$ and $b_{n} \geq b_{n+1}$ for all $n \geq 0$.
Then $\sum_{n=0}^{\infty} a_{n} b_{n}$ is convergent.
Prove this.

Solution: I'm going to apply Dirichlet's test. The $a_{n}$ 's satisfy the conditions of that test: the requirement is that the partial sums $\sum_{i=0}^{n} a_{i}$ be bounded, and since the series $\sum a_{i}$ converges, the sequence of partial sums converges, and hence they are bounded.
The $b_{n}$ 's, though, don't necessarily satisfy the condition that $b_{n} \rightarrow 0$. However, since the $b_{n}$ 's are decreasing and bounded below, the $\operatorname{limit} \lim b_{n}$ exists, so let $b=\lim b_{n}$ and for each $n$, let $c=b_{n}-b$. Then $c_{n} \geq 0$ and $c_{n} \geq c_{n+1}$ for all $n$, and also $c_{n} \rightarrow 0$ as $n \rightarrow \infty$. Therefore the $a_{n}$ 's and the $c_{n}$ 's satisfy the conditions for Dirichlet's test, so the series $\sum a_{n} c_{n}$ converges. Plug in $c_{n}=b_{n}-b$; then we get

$$
\sum a_{n} b_{n}=\sum a_{n} c_{n}+\sum a_{n} b .
$$

Each sum on the right side converges; therefore the one on the left does as well.
(Note that the comparison test requires that all of the terms in the series be non-negative. We don't know anything about the signs of the series $\sum a_{n}$, so we can't use a comparison test here, at least not in any simple way.)
3. (As in the text book, "log" means the natural log.)
(a) (5 points) Does the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{2}}$ converge or diverge?

Solution: It converges. I'll verify this with the integral test: the series converges if and only if the improper integral

$$
\int_{2}^{\infty} \frac{1}{x(\log x)^{2}} d x
$$

converges. Do this integral with a substitution: let $u=\log x$, so $d u=d x / x$. Then the integral equals

$$
\int_{\log 2}^{\infty} \frac{d u}{u^{2}}=\left.\lim _{a \rightarrow \infty} \frac{-1}{u}\right|_{\log 2} ^{a}=\frac{1}{\log 2} .
$$

Since the integral converges, so does the series.
(b) (5 points) Does the series $\sum_{n=1}^{\infty} \frac{1}{n^{\log n}}$ converge or diverge?

Solution: It converges. I'll verify this using a comparison test. For $n \geq 3$, we have $\log n \geq \log 3>1$. Therefore for $n \geq 3$, we have $\frac{1}{n^{\log n}}<\frac{1}{n^{\log 3}}$. Since $\log 3$ is bigger than 1 , the series $\sum \frac{1}{n^{\log 3}}$ converges; therefore the original series converges as well.
(c) (5 points) For which real numbers $x$ does the series $\sum_{n=1}^{\infty} \frac{x^{n}}{3 n}$ converge, and for which does it diverge?

Solution: Let's use the root test: let $u_{n}=x^{n} / 3 n$, and then

$$
\sqrt[n]{\left|u_{n}\right|}=\frac{|x|}{(3 n)^{1 / n}}
$$

As $n \rightarrow \infty, n^{1 / n}$ goes to 1 , as does $3^{1 / n}$; therefore $\sqrt[n]{\left|u_{n}\right|}$ goes to $|x|$. So if $|x|<1$, the series converges and if $|x|>1$, it diverges. What if $|x|=1$ ? If $x=1$, we have a harmonic series, which diverges. If $x=-1$, we have a series which converges by the alternating series test. Summarizing: if $-1 \leq x<1$, the series converges; otherwise, it diverges.
The ratio test works just as well.
4. (15 points) Define $f(x)$ by

$$
f(x)=\sum_{n=0}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{n}}
$$

for all real numbers $x$.
(a) Find a simple expression for $f(x)$ when $x \neq 0$. (Hint: factor out $x^{2}$ and use a geometric series.)

Solution: Note that if $x \neq 0$, then $1+x^{2}>1$, so $\frac{1}{1+x^{2}}<1$. We have

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{n}}=x^{2} \sum_{n=0}^{\infty} \frac{1}{\left(1+x^{2}\right)^{n}} \\
& =x^{2} \sum_{n=0}^{\infty}\left(\frac{1}{1+x^{2}}\right)^{n}=x^{2} \frac{1}{1-\frac{1}{1+x^{2}}} \quad \text { (geometric series) } \\
& =x^{2} \frac{1+x^{2}}{1+x^{2}-1}=x^{2} \frac{1+x^{2}}{x^{2}} \\
& =1+x^{2} .
\end{aligned}
$$

(b) What is $f(0)$ ? Does $f(x)$ have any discontinuities? Can you deduce anything about uniform convergence?

Solution: Clearly $f(0)=0$ : just plug $x=0$ into the series defining $f(x)$. (The answer for part (a) explicitly says $x \neq 0$, so we can't plug $x=0$ into that to find $f(0)$.) Therefore $f(x)$ has a discontinuity at 0 : when $x \neq 0, f(x)=1+x^{2}$, and as $x$ approaches zero, this approaches 1 . Therefore, the series cannot converge uniformly on any interval containing 0 .
(c) Show that if $a$ is any positive real number, then the series converges uniformly on the interval $[a, \infty)$.

Solution: Fix a positive number $a$. Then for all $x \in[a, \infty)$, since $x \geq a$, then $\frac{1}{1+x^{2}} \leq \frac{1}{1+a^{2}}$. Since $a$ is positive, $1 /\left(1+a^{2}\right)<1$, so the geometric series $\sum 1 /\left(1+a^{2}\right)^{n}$ converges. By the Weierstrass $M$-test, the series defining $f(x)$ converges uniformly.
5. (10 points) Let $f(x)=\sum_{n=1}^{\infty} \frac{\sin n x}{n^{2}}$ for $0 \leq x \leq 2 \pi$.
(a) Does the series converge uniformly to $f(x)$ ?

Solution: Yes: for all $n$ and $x$, we have

$$
\left|\frac{\sin n x}{n^{2}}\right| \leq \frac{1}{n^{2}},
$$

and so by the Weierstrass $M$-test, the series converges uniformly.
(b) Is the equality

$$
\frac{d}{d x} f(x)=\sum_{n=1}^{\infty} \frac{d}{d x}\left(\frac{\sin n x}{n^{2}}\right)
$$

valid for all $x$ in $[0,2 \pi]$ ? (Or as the book phrases it, can $f^{\prime}(x)$ be calculated for each $x$ in the specified interval by differentiating the series for $f(x)$ term by term?)

Solution: No. Consider the series

$$
\sum_{n=1}^{\infty} \frac{d}{d x}\left(\frac{\sin n x}{n^{2}}\right)=\sum_{n=1}^{\infty} \frac{n \cos n x}{n^{2}}=\sum_{n=1}^{\infty} \frac{\cos n x}{n} .
$$

When $x=0$, this becomes $\sum_{n=1}^{\infty} \frac{1}{n}$, which is the harmonic series, and hence diverges. So the series of derivatives doesn't converge at all, let alone uniformly.

