FINAL

Math 327A

name

You must show all work for full credit. Use the backs of the test pages as necessary. you should be able to prove 1×n; converges you do not need to alculate what 1. Find the limit of the sequence $\{x_n\}$ defined inductively by $x_1 = \sqrt{2}, x_{n+1} =$ $\sqrt{2}^{x_n}$. Justify your answer. You may assume that $x_n < \sqrt{2}^{x_n}$ for any term x_n of this sequence. since xn < J2 = Xn+1 ×n is increasing, j×n & is also bounded since VNEN Xn ≤ 2 Proof by induction 1) For n=1 $\sqrt{2} \leq 2$ 2) Assume $x_n \leq 2$ Hen $x_{n+1} = \sqrt{2}^n \leq \sqrt{2}^n = 2$ So $d \times n G$ is convergent to some limit E we must have $l = \sqrt{2}^{l}$. The function $f(x) = x - \sqrt{2}^{x}$ is continuous and increasing (cleck f') between $\sqrt{2}$ and 2 f(2) = 0 and 2 must then be the only 0 so l = 22. Use the definition of limit to compute the limit of $n/(n^2+1)$ as $n \to \infty$. Justify your answer. Given zoo take $t > \frac{1}{\mathcal{E}}$ then if $n \ge M \left(\frac{n}{n^2 + 1}\right) = \frac{n}{n^2(1 + \frac{1}{n^2})} = \frac{1}{n} \cdot \frac{1}{1 + \frac{1}{n^2}} < \frac{1}{\mathcal{H}} < \mathcal{E}$ Guess fine $\frac{n}{n^2+l} = 0$ proof 3. Let $\{x_n\}$ be a sequence of real numbers converging to $\pi/2$. Show that $\{\cos x_n\}$ converges to 0. We proved in the how that sin(x) is a continuous function $\sin \alpha$ $\cos x = \sin \left(\frac{\pi}{2} - x\right)$, $\cos x$ is continuous too ဘ $i\int_{Z} x_n - \frac{\pi}{2} \quad (a_2 \times x_n - 7 \quad (a_2 \times T = 0))$

4. The following are incorrect statements of theorems discussed in class. In each case give the *correct* statement of the theorem.

a. If $f_n(x) \to f(x)$ on [a, b] and f_n, f are continuous, then the convergence is uniform.

b. If $\{f_n(x)\}$ converges uniformly to the function f(x) on $[a, \infty)$ and the f_n are continuous, then $\{\int_a^{\infty} f_n(x)dx\}$ converges to $\int_a^{\infty} f(x)dx$. c. If $f_n(x) \leq a_n$ on [a, b] and a_n converges to 0, then $f_n(x)$ converges to 0

uniformly.

SKIP

5. Write down a power series which converges exactly for |x| < 2 and compute its sum explicitly.

$$\sum_{n=0}^{\infty} \left(\frac{x}{z}\right)^n$$

6. Work out a power series expansion of $\tan^{-1}(x^2)$ valid for |x| < 1.

skip

Skip

7. Decide whether the following sequences $f_n(x)$ of functions converge uniformly to the given function f(x) on the given interval. a. $f_n(x) = n/(x+n), f(x) = 1, \text{ on } [1, \infty).$ \mathcal{NO} b. $f_n(x) = (\tan^{-1}nx)/n^2, f(x) = 0, \text{ on } [0, \infty).$ \mathcal{YES} $\mathcal{SK}_{\mathcal{P}} c. f_n(x) = \sum_{i=0}^n x^i, f(x) = 1/(1-x), \text{ on } [-3/4, 1/2] \quad \mathcal{CS} \qquad \mathcal{Y} \rightarrow \mathcal{I}$ a) Teke $\varepsilon = \frac{1}{2}$, then given \mathcal{H} toke $n \neq \mathcal{M}$ and $x \neq 0.6$ $\left|\frac{n}{x+n} - 1\right| = \frac{x}{x+n} \neq \frac{1}{2}$ b) Given ε toke $\mathcal{H} \neq \frac{1}{\sqrt{\frac{2}{T}\varepsilon}}$ then if $n > \mathcal{M}$ $\left|\frac{\tan^{-1}(nx)}{n^2}\right| < \frac{\frac{T}{2}}{\frac{\pi}{T^2}} < \frac{T_{12}}{\frac{2}{T}\varepsilon}$

c) Let
$$U_n(x) = x^n$$
 then $|U_n(x)| \in \left(\frac{3}{4}\right)^{h}$ and by the lowerestress
M test $\sum_{n=1}^{\infty} x^n$ converges uniformily on $[-\frac{3}{4}c_1]/2$

8. Show that the function $f(x) = x^3 + x^2$, regarded as defined on the closed interval [1,2], has a continuous inverse defined on the interval [2,12]. You may use basic information from differential calculus.

Recall that if
$$j = 1 - R$$
 is strictly monotone then
 $5^{-1} \quad j(1) - R$ is continuous
if $1 \leq x_1 \leq x_2$ and $x_1^3 \leq x_2^3$ so $x_1^3 + y_1^2 \leq x_2^3 + x_2^3$, sol is strictly
monotone,
 $f(1) = 2, \quad f(2) = 12$ so $f(1,2) = L^2, \quad R^2$
 $f^{-1} \quad [2,12] = 0R$ is therefore continuous