Write clearly and legibly. Justify all your answers.
You will be graded for correctness and clarity of your solutions.
You may use one 8.5 x 11 sheet of notes; writing is allowed on both sides.
You may use a calculator.
You can use elementary algebra and any result that we proved in class (but

not in the homework). You need to prove everything else. Please raise your hand and ask a question if anything is not clear. This exam contains 7 pages and is worth a total of 50 points.

You have 50 minutes. Good luck

NAME:_____

PROBLEM 1 _____

PROBLEM 2 _____

PROBLEM 3 _____

Total (50 points) _____

• **Problem 1** (10 points) Prove that if $\sum_{i=1}^{\infty} a_i$ converges to a and $\sum_{i=1}^{\infty} b_i$ converges to b then $\sum_{i=1}^{\infty} (ca_i + db_i)$ converges to ca + db

(5 points) Give an example of series $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ that both diverge and numbers $c \neq 0$ and $d \neq 0$ such that $\sum_{i=1}^{\infty} (ca_i + db_i)$ converges

Problem 2 (20 points) Decide whether the following series are convergent or divergent and give a proof.
 ∑_{i=1}[∞] ⁱ⁺¹/_{√i⁴+3}

b) $\sum_{i=1}^{\infty} \frac{i 2^i}{5^i}$

(PROBLEM 2 CONTINUED)

c) $\sum_{i=1}^{\infty} \frac{2-(-1)^i}{i^2}$

d)
$$\sum_{i=1}^{\infty} a_i$$
, where $\begin{cases} a_i = 0 & \text{if i is even} \\ a_i = \frac{i-1}{i+1} & \text{if i is odd} \end{cases}$

• **Problem 3** (15 points) Decide whether the following series are absolutely convergent, convergent but not absolutely or divergent and give a proof.

a) $\sum_{i=1}^{\infty} (-1)^i \frac{2^i}{i!}$

b) $\sum_{i=1}^{\infty} (-1)^i \frac{1}{i+5}$

(PROBLEM 3 CONTINUED)

c) $\sum_{i=1}^{\infty} (-2)^i \frac{1}{3^{i+1}}$