Math 327 Fall 2016 Midterm 1

 $\label{thm:weight} \textit{Write clearly and legibly. Justify all your answers.}$

 $You\ will\ be\ graded\ for\ correctness\ and\ clarity\ of\ your\ solutions.$

You may use one 8.5 $\it x$ 11 sheet of notes; writing is allowed on both sides. You may use a calculator.

You can use elementary algebra and any result that we proved in class (but not in the homework). You need to prove everything else.

Please raise your hand and ask a question if anything is not clear.

This exam contains 6 pages and is worth a total of 50 points.

You have 50 minutes. Good luck

NAME:
PROBLEM 1 (10 points)
PROBLEM 2 (17 points)
FROBLEM 2 (17 points)
PROBLEM 3 (11 points)
PROBLEM 4 (12 points)
T. 4. 1
Total

1

• Problem 1 (10 points) Find $\lim_{n\to\infty} \frac{n+1}{2n+1}$ and prove your result.

Proof:
$$\frac{n+1}{2n+1} = \frac{1}{2}$$

Proof: $\frac{n+1}{2n+1} = \frac{n(1+1/n)}{n(2+\frac{1}{n})} = \frac{1+1/n}{2+\frac{1}{n}}$; using the fact that

lime $\frac{1}{n-1} = 0$ and limit laws we get $\lim_{n\to\infty} \frac{n+1}{2n+1} = \frac{1+0}{2+0} = \frac{1}{2}$

Afternative proof using the first definition

We need to prove that
$$\forall E > 0 \exists H \in \mathcal{N} \quad \forall n \geq M \quad |\frac{n+1}{2n+1} - \frac{1}{2}| \leq E$$

given E , take $M > \frac{1}{2}(\frac{1}{2E}-1)$ then if $n \geq M$ $n > \frac{1}{2}(\frac{1}{2E}-1)$ so

 $2n > \frac{1}{2E}-1$ so $2n+1 > \frac{1}{2E}$ so $\frac{1}{2(2n+1)} < E$ so

$$\left|\frac{1}{Z(2n+1)}\right| \leq \varepsilon \qquad \left|\frac{1}{Z(2n+1)} + \frac{1}{Z} - \frac{1}{Z}\right| \leq \varepsilon \quad \text{and}$$

$$\left|\frac{2n+2}{Z(2n+1)} - \frac{1}{Z}\right| \leq \varepsilon \qquad \text{So} \quad \left|\frac{n+1}{Zn+1} - \frac{1}{Z}\right| \leq \varepsilon$$

- Problem 2 Given $S = \{\frac{n+1}{2n+1} | n \in N\}$ Let $s = \sup S$ and $i = \inf S$ a) (6 points) Find the value of i and prove $i = \inf S$.
- Proof

 1) $\frac{1}{2} \le \frac{n+1}{2n+1} = 7$ $2n+1 \le 2n+1 \le 7$ $1 \le 1$ True $\forall n \in M$
- 2) Since we already proved in problem 1 that $\frac{n+1}{2n+1} \frac{1}{2}$ it is true that given $E = \frac{1}{2}\frac{1}{n} + \frac{1}{2}\frac{1}{2n+1}$ (In this particular case it is true that $\frac{1}{2} + \frac{1}{2} +$

bot this is not repuired and in general not true, by the definition of inf.)

b) (6 points) Find the value of s and prove
$$s = \sup S$$
 $S = \frac{2}{3}$

Proof

1) $\frac{n+1}{2n+1} \le \frac{2}{3} = 2$
 $3n+3 \le 4n+2 = 2$
 $1 \le n$ True for all n

So $\frac{2}{3}$ is an upper bound for S .

When $n=1$ $\frac{1+1}{2\cdot 1+1} = \frac{2}{3}$ so $\frac{2}{3} \in S$

c) (3 points) Is S closed ? Justify your answer.

no
$$\frac{n+1}{2n+1} - 0 \frac{1}{2}$$
 but $\frac{1}{2} \notin S$ since $\frac{n+1}{2n+1} = \frac{1}{2} \iff S$ since $\frac{n+1}{2} = \frac{1}{2} \iff S$ since \frac

d) (2 points) Is S sequentially compact? Justify your answer.

No, because it is not closed.

Afternatively

No any sequence leng in S is a subsequence of
$$\frac{n+1}{2n+1}$$
 so leng and all its subsequences also concerge to $\frac{1}{2}$ $\frac{4}{5}$

• **Problem 3**(\P points) Prove that if the sequence $\{a_n\}$ converges to a then the sequence $\{|a_n|\}$ converges to |a|.(you can use the inequality $(|x-y| \ge ||x|-|y||)$

Assume a_n-oa , then we need to prove $|e_n|-o|a|$, that is $\forall \varepsilon>0$ $\exists M\in N \ \forall n\geq M \ ||a_n|-|a||<\varepsilon$ given ε we know there is M s.t $\forall n\geq M \ ||a_n-a||<\varepsilon$ therefore if $n\geq M$ $||a_n-a||\leq ||a_n-a||<\varepsilon$ (the same M that works for land elso works for land)

(4 points) Is it true that if $\{|a_n|\}$ converges to |a| then $\{a_n\}$ converges to a? Justify your answer.

• **Problem 4**(12 points) Say if each of the statements below is True or False (just write T or F next to each of them). No justification is necessary.

1. A convergent sequence must be monotone and bounded. F

It must be bounded, not necessarily manatone

For ex (-1) n is not monotone but converges

2. A decreasing sequence converges. F

If it is also bounded Ex [-n] is decreasing but

3. A set S can have a maximum but no least upper bound. PIf $m = ma \times (S)$ then m = sup(S)

4. Q is closed. F Q is dense in R so we can find a sequence of rational numbers converging for example to \(\text{Te} \) \(\text{Q} \) 5. Q is open. F 0 \(\text{Q} \) but any interval \((-\text{E}, \text{E}) \) contains irrational numbers for exemple \(\text{Te} \) if n is big enough

6. Assume $\{a_n\}$ converges, and $\{b_n\}$ is a sequence. Then $\{a_n \cdot b_n\}$ converges if and only if $\{b_n\}$ converges. F

if $\{a_n\}$ converges then $\{a_n \cdot b_n\}$ converges but it is possible for $\{a_n\}$ but it is possible for $\{a_n\}$ but $\{a_n\}$ converge and $\{a_n\}$ but $\{a_n\}$ converge. For example $\{a_n\}$ $\{a_n\}$