Math 327 Fall 2016 Midterm 1

Write clearly and legibly. Justify all your answers.
You will be graded for correctness and clarity of your solutions.
You may use one 8.5×11 sheet of notes; writing is allowed on both sides. You may use a calculator.

You can use elementary algebra and any result that we proved in class (but not in the homework). You need to prove everything else.

Please raise your hand and ask a question if anything is not clear.
This exam contains 6 pages and is worth a total of 50 points.
You have 50 minutes. Good luck

NAME:

PROBLEM 1 (10 points) \qquad

PROBLEM 2 (17 points) \qquad

PROBLEM 3 (11 points) \qquad

PROBLEM 4 (12 points) \qquad
Total \qquad

- Problem 1 (10 points) Find $\lim _{n \rightarrow \infty} \frac{n+1}{2 n+1}$ and prove your result.
- Problem 2 Given $S=\left\{\left.\frac{n+1}{2 n+1} \right\rvert\, n \in N\right\}$ Let $s=\sup S$ and $i=\inf S$ a) (6 points) Find the value of i and prove $i=\inf S$.
b) (6 points) Find the value of s and prove $s=\sup S$
c) (3 points) Is S closed ? Justify your answer.
d)(2 points) Is S sequentially compact ? Justify your answer.
- Problem 3(7 points)Prove that if the sequence $\left\{a_{n}\right\}$ converges to a then the sequence $\left\{\left|a_{n}\right|\right\}$ converges to $|a|$. (you can use the inequality $(|x-y| \geq$ $||x|-|y||)$
(4 points) Is it true that if $\left\{\left|a_{n}\right|\right\}$ converges to $|a|$ then $\left\{a_{n}\right\}$ converges to a ? Justify your answer.
- Problem 4(12 points) Say if each of the statements below is True or False (just write T or F next to each of them), and briefly explain why.

1. A convergent sequence must be monotone and bounded.
2. A decreasing sequence converges.
3. A set S can have a maximum but no least upper bound.
4. Q is closed.
5. Q is open.
6. Assume $\left\{a_{n}\right\}$ converges, and $\left\{b_{n}\right\}$ is a sequence. Then $\left\{a_{n} \cdot b_{n}\right\}$ converges if and only if $\left\{b_{n}\right\}$ converges.
