Write clearly and legibly. Justify all your answers.
You will be graded for correctness and clarity of your solutions.
You may use one 8.5×11 sheet of notes; writing is allowed on both sides. You may use a calculator.

You can use elementary algebra and any result that we proved in class (but not in the homework). You need to prove everything else.

Please raise your hand and ask a question if anything is not clear.
This exam contains 8 pages and is worth a total of 90 points.
You have 1 hour and 50 minutes. Good luck

NAME: \qquad

PROBLEM 1 \qquad
PROBLEM 2 \qquad

PROBLEM 3 \qquad

PROBLEM 4 \qquad
PROBLEM 5 \qquad

PROBLEM 6 \qquad
Total \qquad

- Problem 1 (10 points) Prove that if $|r|<1$ then $\left\{r^{n}\right\}$ converges (do a full proof using the definition of limit of a sequence, do not just quote a result from class)
We want to prove $\lim _{n \rightarrow 0+\infty} r^{n}=0$ that is
$\forall \varepsilon>0 \quad \exists M \quad \forall n \geqslant M \quad\left|r^{n}\right|<\varepsilon$
If $r=0$ then $r^{n}=0$ so obviously $\left|r^{n}\right|=0<\varepsilon \quad \forall n \geqslant 1$ assume $r \neq 0$. Given ε take $\mu>\frac{\ln \varepsilon}{\ln |r|}$ then if $n>M \quad n>\frac{\ln \varepsilon}{\ln |r|}$ so $n \ln |r|<\ln \varepsilon$ so $\ln |r|^{n}<\ln \varepsilon$ So $|r|^{n}<\varepsilon$ (Since $\ln x$ is an increasing function)

Scretch work $\left|r^{n}\right|<\varepsilon \Leftrightarrow>$

$$
|r|^{n}<\varepsilon \Leftrightarrow \text { if } r \neq 0
$$

$n \ln |r|<\ln \varepsilon \Leftrightarrow$
$n>\frac{\ln \varepsilon}{\ln |r|}$

- Problem 2 (15 points) Decide if the following functions are uniformily continuous, and prove your answer.

1. $f:(0,+\infty) \rightarrow R, \quad f(x)=\frac{1}{x^{2}}$

No: take $u_{n}=\frac{1}{n} \quad v_{n}=\frac{1}{2 n}$ then $u_{n}-v_{n}=\frac{1}{2 n}-\gamma 0$ but $f\left(u_{n}\right)-f\left(v_{n}\right)=n^{2}-(2 n)^{2}=-3 n^{2}$ to 0
2. $f:\left(\frac{1}{2}, 2\right) \rightarrow R, \quad f(x)=\frac{1}{x^{2}}$
yes we want to prove
$\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x, y \in\left(\frac{1}{2}, 2\right) \quad|x-y|<\delta \Rightarrow\left|\frac{1}{x^{2}}-\frac{1}{y^{2}}\right|<\varepsilon$
Given ε take $\delta<\frac{\varepsilon}{64}$ then $\left|\frac{1}{x^{2}}-\frac{1}{y^{2}}\right|=\frac{\left|y^{2}-x^{2}\right|}{x^{2} y^{2}}=\frac{|x-y||x+y|}{x^{2} y^{2}} \leqslant$ $\frac{\delta \cdot 4}{\frac{1}{4} \cdot \frac{1}{4}}=64 \delta<\varepsilon$

Scratch work: Went $\left|\frac{1}{x^{2}}-\frac{1}{y^{2}}\right|=\left|\frac{y^{2}-x^{2}}{x^{2} y^{2}}\right|=\frac{|x+y||x-y|}{x^{2} y^{2}}<\varepsilon$
and on $\left(\frac{1}{2},|x+y| \leqslant c\right.$ and on $\left(\frac{1}{2}, 2\right)|x+y| \leqslant 4, x^{2} y^{2} \geq \frac{1}{16}$ so we just need $\frac{|x+y||x-y|}{x^{2} y^{2}} \leq 4 \cdot 16 \delta<\varepsilon \quad$ of $\sigma<\frac{\varepsilon}{64}$
3. Problem 3 (15 points) Prove that the image of a closed and bounded set under a continuous function is closed. That is, if $f: D \rightarrow R$ is continuous and D is closed and bounded, then $f(D)$ is closed.

Assume $\left\{y_{n}\right\}$ is a sequence in $f(D)$ and $y_{n}-0 y_{0}$ we need to show $y_{0} \varepsilon f(D)$
Since $y_{n} \in f(D), y_{n}=f\left(x_{n}\right)$ for some $x_{n} \in D$
The seplence $\left\{x_{n}\right\}$ is bounded (because D is bounded) so it has a convergent subsequence $x_{n_{k}}-0 x_{0}, x_{0} \varepsilon D$ (because D is closed) and $f\left(x_{n_{k}}\right)-0 f\left(x_{0}\right)$ because f is continuous. But $f\left(x_{n_{k}}\right)=y_{n_{k}}$ is a subsequence of $\left\{y_{n}\right\}$ so it must also converge to y_{0}, therefore $y_{0}=f\left(x_{0}\right)$ so $y_{0} \in f(D)$
4. Problem 4 (15 points) Given $f D \rightarrow R$ define what it means to say that $\lim _{x \rightarrow x_{0}} f(x)=l$. We have given two equivalent definitions, you can use either one of the two.

$$
\begin{aligned}
& \text { If }\left\{x_{n}\right\} \text { is a sequence in } D, \text { auth } x_{n} \neq x_{0} \text {, such that } \\
& x_{n}-0 x_{0} \text { then } f\left(x_{n}\right)-0 \ell \\
& \text { or } \\
& \left.\forall \varepsilon>0 \exists \delta>0 \quad \forall x \in D-d x_{n}\right\} \quad\left|x-x_{0}\right|<\delta \Rightarrow|f(x)-e|<\varepsilon
\end{aligned}
$$

Given $f D \rightarrow R$ define what it means to say the f is continuous at $x_{0} \in D$.

$$
\lim _{x \rightarrow 0 x_{0}} f(x)=f\left(x_{0}\right)
$$

Using the definition above, prove that $f: R \rightarrow R, \mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$ is continuous everywhere (do a full proof, do not just quote the result from class that sums and products of continuous functions are continuous. You can use limit laws, if you like).

$$
\begin{aligned}
& \text { Suppose } x_{0} \in R \text { and }\left\{x_{n}\right\} \text { s a sequence } \\
& \text { st } x_{n}-0 x_{0} \text {, then by limit properties of } \\
& \text { sequences } 2 x_{n}+1 \rightarrow 2 x_{0}+1=f\left(x_{0}\right)
\end{aligned}
$$

5. Problem 5 (15 points) Say whether the following series diverge or converge and justify your answer.
a) $\sum_{i=1}^{\infty} \frac{\sqrt{i^{2}+1}}{i^{4}+5}$
it converges since $\sum_{L=1}^{\infty} \frac{1}{L^{3}}$ converges and $\lim _{L \rightarrow 0+\infty} \frac{\frac{\sqrt{L^{2}+1}}{L 4+5}}{\frac{1}{L 3}}=\frac{L^{3} \cdot L \sqrt{1+1 / L^{2}}}{L^{4}\left(1+\frac{5}{L 4}\right)}=1$
b) $\sum_{i=1}^{\infty} \frac{10^{i}}{i!}$
it converges by the ratio test $\lim _{n \rightarrow+\infty} \frac{10^{n+1}}{(n+1)!} \cdot \frac{n!}{10^{n}}=0$
c) $\sum_{i=1}^{\infty} a_{i}$ where $\left\{\begin{array}{l}a_{i}=\frac{1}{i} \quad \text { if } \mathrm{i} \text { is odd } \\ a_{i}=\frac{1}{i^{2}} \quad \text { if } \mathrm{i} \text { is even }\end{array}\right.$

It diverges since $a_{L} \geqslant b_{L} \geqslant 0$ where $\quad b_{L}=\left\{\begin{array}{lll}\frac{1}{c} & \text { if } i \text { is odd } \\ 0 & \text { if } i & \text { is even }\end{array}\right.$
and $\sum_{L=1}^{\infty} b_{l}=\sum_{k=1}^{\infty} \frac{1}{2 k-1}$
(more precisely if $s_{n}=\sum_{L=1}^{n} b_{L} \quad$ and $\quad t_{n}=\sum_{L=1}^{n} \frac{1}{2 L-1}$
then $t_{n}=S_{2 n}$)
and $\sum_{k=1}^{\infty} \frac{1}{2 k-1}$ diverges by limit comparison test
with $\sum_{k=1}^{k=1} \frac{1}{k} ; \lim _{k \rightarrow 0+\infty} \frac{\frac{1}{2 k-1}}{\frac{1}{k}}=\frac{k}{6} \frac{k}{k\left(2-\frac{1}{k}\right)}=\frac{1}{2}$
(so t_{n} diverges and since a subsequence $s_{\text {en }}$ of s_{n} diverges
then s_{n} diverges too)
So $\sum_{i=1}^{\infty} b_{u}$ diverges and therefore $\sum_{i=1}^{\infty} a_{u}$ diverges
6. Problem 6 (20 points) Consider the sequence of functions $\left\{f_{n}\right\}$, with $f_{n}: R \rightarrow$ R defined by $f_{n}(x)=\frac{x^{2 n}}{1+x^{2 n}}$
a) find the function f the sequence converges pointwise

$$
\begin{array}{rl}
f & R-R \\
f(x) & = \begin{cases}0 & \text { if }|x|<1 \\
i / 2 & \text { if } x= \pm 1 \\
1 & \text { if }|x|>1\end{cases}
\end{array}
$$

since if $|x|<1 \quad x^{2 n}-00$
if $|x|=1$
if $|x|>1$

b) does $\left\{f_{n}\right\}$ converge to f uniformily ? Justify your answer

No f is not continuous

(CONTINUED FROM PREVIOUS PAGE)

c) If you change the domain of f_{n} from R to $\left(0, \frac{1}{2}\right)$, find the function f the sequence converges pointwise .

$$
\begin{aligned}
& f\left(0, \frac{1}{2}\right)-0 R \\
& f(x)=0
\end{aligned}
$$

d) Does the sequence in part c) converge uniformily? Justify your answer.

$$
\begin{align*}
& \text { Yes We need to show } \\
& \forall \varepsilon>0 \text { meN } \forall n \geqslant M \quad \forall x \quad\left|f_{n}(x)\right|<\varepsilon \\
& \text { Glen } \varepsilon \text { choose } n>\frac{\ln \varepsilon}{\ln \frac{1}{c_{1}}} \text { then } n \ln \frac{1}{c_{1}}<\ln \varepsilon \quad \text { and }\left(\frac{1}{c_{1}}\right)^{n}<\varepsilon \\
& \text { So }\left|\frac{x^{2 n}}{1+x^{2 n}}\right|<\frac{\left(\frac{1}{4}\right)^{n}}{1}<\varepsilon \\
& \text { Scretchuork: went } \left.\frac{x^{2 n}}{1+x^{2 n}}<\varepsilon \text { since on } \text { (o } \frac{1}{2}\right) \\
& \frac{x^{2 n}}{1+x^{2 n}}<\frac{x^{2 n}}{1}<\left(\frac{1}{4}\right)^{n} \text { it is sufficient to take }\left(\frac{1}{L_{1}}\right)^{n}<\varepsilon \\
& \text { So } n>\frac{\ln \varepsilon}{\ln \frac{1}{4}}
\end{align*}
$$

