Math 327 Fall 2016 Final Exam

 $\label{thm:weight} \textit{Write clearly and legibly. Justify all your answers.}$

 $You\ will\ be\ graded\ for\ correctness\ and\ clarity\ of\ your\ solutions.$

You may use one 8.5×11 sheet of notes; writing is allowed on both sides. You may use a calculator.

You can use elementary algebra and any result that we proved in class (but not in the homework). You need to prove everything else.

Please raise your hand and ask a question if anything is not clear.

This exam contains 8 pages and is worth a total of 90 points.

You have 1 hour and 50 minutes. Good luck

NAME:
PROBLEM 1
PROBLEM 2
PROBLEM 3
PROBLEM 4
PROBLEM 5
PROBLEM 6
Total

1

• Problem 1 (10 points) Prove that if $|r| \not \in 1$ then $\{r^n\}$ converges (do a full proof using the definition of limit of a sequence, do not just quote a result from class)

We want to prove $\lim_{n\to +\infty} r^n = 0$ that is $Y \in Y \cap A$ $Y \cap Y \cap A$ $Y \cap A \cap A$ $Y \cap A$ $Y \cap A \cap A$ $Y \cap$

Scretch work $|r^n| \leq \varepsilon \iff$ $|r|^n \leq \varepsilon \iff$ if $r \neq 0$ $|r|^n \leq \varepsilon \iff$ $|r|^n \leq \varepsilon \iff$ $|r|^n \leq \varepsilon \iff$ $|r|^n \geq \frac{|r|^n}{|r|^{n+1}}$

• Problem 2 (15 points) Decide if the following functions are uniformily continuous, and prove your answer.

1.
$$f: (0, +\infty) \to R$$
, $f(x) = \frac{1}{x^2}$

No: take
$$U_n = \frac{1}{n}$$
 $V_n = \frac{1}{2n}$ then $U_n - V_n = \frac{1}{2n} - 80$
but $f(U_n) - f(V_n) = n^2 - (2n)^2 = -3n^2 + 80$

2.
$$f: (\frac{1}{2}, 2) \to R$$
, $f(x) = \frac{1}{x^2}$

Yes we want to prove

 $\forall \mathcal{E} > 0 \quad \exists \mathcal{E} > 0 \quad \forall x, y \mathcal{E} \quad (\frac{1}{2}, 2) \quad |x-y| < \mathcal{E} = > |\frac{1}{x^2} - \frac{1}{y^2}| < \mathcal{E}$

Given \mathcal{E} take $\mathcal{E} < \frac{\mathcal{E}}{6\mathcal{E}}$ then $|\frac{1}{x^2} - \frac{1}{y^2}| = \frac{|y^2 - x^2|}{|x^2y^2|} = \frac{|x-y|(x+y)|}{|x^2y^2|} \le \frac{\mathcal{E}}{|x^2y^2|} = \frac{\mathcal{E}}{|x^2y^2|} = \frac{|x-y|(x+y)|}{|x^2|^2} \le \frac{\mathcal{E}}{|x^2|^2} = \frac{\mathcal{E}}{|x^2|^2} = \frac{|x-y|(x+y)|}{|x^2|^2} \le \frac{\mathcal{E}}{|x^2|^2} = \frac{|x-y|(x+y)|}{|x^2|^2} = \frac{|x-y|(x+y)|}{|x-y|^2} = \frac{|x-y|(x+y)|}{|x-y|^2} = \frac{|x-y|(x+y)|}{|x-y|^2} = \frac{|x-y|(x+y)|}{|x-y|^2} = \frac{|x-y|(x+y)|}{|x-y|^2} = \frac{|x-y|(x+y)|}{|x-y|^2} = \frac{|x-y|^2}{|x-y|^2} = \frac{|x-y|^2}$

Scratchwork: went
$$\left|\frac{1}{y^2} - \frac{1}{y^2}\right| = \left|\frac{y^2 - y^2}{x^2 y^2}\right| = \frac{|x + y||x - y|}{x^2 y^2} < \varepsilon$$
 and on $C_{\frac{1}{2}, 2}$) $|x + y| \le 4$, $|x - y| \le \frac{1}{16}$ so we just need $\frac{|x + y||x - y|}{x^2 y^2} \le 4 \cdot 16 \cdot 6 \le \varepsilon$ to $\frac{\varepsilon}{3} \le \frac{\varepsilon}{64}$

3. **Problem 3** (15 points) Prove that the image of a closed and bounded set under a continuous function is closed. That is, if $f: D \to R$ is continuous and D is closed and bounded, then f(D) is closed.

Assume $y_n y_n y_n = x_n y_n = y_n y_n = y_n$

4. **Problem 4** (15 points) Given $fD \to R$ define what it means to say that $\lim_{x \to x_0} f(x) = l$. We have given two equivalent definitions, you can use either one of the two.

If
$$d \times n \leq 1$$
 is a sequence in D, with $\times n \neq \infty$, such that $\times n = 0$ then $\int (\times n) = 0$

Or

3>19-(x)2 (<= 2 > 10x-x1 fox6-d 3x V 0x3 E 0x3V

Given $f D \to R$ define what it means to say the f is continuous at $x_0 \in D$.

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Using the definition above, prove that $f:R\to R$, f(x)=2x+1 is continuous everywhere (do a full proof, do not just quote the result from class that sums and products of continuous functions are continuous. You can use limit laws , if you like).

Suppose
$$x_0 \in \mathbb{R}$$
 and $\frac{1}{4}x_n \frac{1}{5}$ is a sequence
s.t $x_n - o(x_0)$ then by finit properties of
Sequences $\frac{2}{4}x_n + 1 - \frac{1}{2}x_0 + 1 = f(x_0)$

5. **Problem 5** (15 points) Say whether the following series diverge or converge and justify your answer.

a)
$$\sum_{i=1}^{\infty} \frac{\sqrt{i^2+1}}{i^4+5}$$

it converges since
$$\frac{\sum_{l=1}^{\infty} \frac{1}{L^3}}{\frac{1}{L^3}}$$
 converges and $\frac{\sum_{l=1}^{\infty} \frac{1}{L^3}}{\frac{1}{L^3}} = \frac{1}{L^3} \cdot \frac{\sum_{l=1}^{\infty} \frac{1}{L^3}}{\frac{1}{L^3}} = 1$

b)
$$\sum_{i=1}^{\infty} \frac{10^i}{i!}$$
It converges by the ratio test
$$\lim_{n\to +\infty} \frac{|0^{n+1}|}{|n+1|!} \cdot \frac{n!}{|0^n|} = 0$$

c)
$$\sum_{i=1}^{\infty} a_i$$
 where $\begin{cases} a_i = \frac{1}{i} & \text{if i is odd} \\ a_i = \frac{1}{i^2} & \text{if i is even} \end{cases}$

It diverges since $a_i \geq b_i \geq 0$ where $b_i = \begin{cases} \frac{1}{L} & \text{if i is odd} \\ 0 & \text{if i is even} \end{cases}$

Ond $\sum_{L=1}^{\infty} b_L = \sum_{K=1}^{\infty} \frac{1}{2^{K-1}}$

(more precisely if $S_n = \sum_{L=1}^{\infty} b_L$ and $t_n = \sum_{L=1}^{\infty} \frac{1}{2^{L-1}}$

then $t_n = S_{2n}$)

and $\sum_{L=1}^{\infty} \frac{1}{L}$ diverges by finit comparison test with $\sum_{K=1}^{\infty} \frac{1}{K}$; find $\sum_{K=0}^{\infty} \frac{1}{L} = \frac{1}{L}$

(so t_n diverges and since a subsequence S_{2n} of S_n diverges

- 6. **Problem 6** (20 points) Consider the sequence of functions $\{f_n\}$, with $f_n: R \to R$ defined by $f_n(x) = \frac{x^{2n}}{1+x^{2n}}$
 - a) find the function f the sequence converges pointwise

$$f(x) = \begin{cases} 0 & \text{if } |x| < 1 \\ \frac{1}{2} & \text{if } |x| < 1 \end{cases}$$

Since if
$$|X| \le 1$$
 $\times 2^n - 60$
If $|X| = 1$ $\times 2^n - 60$
If $|X| > 1$

(CONTINUED FROM PREVIOUS PAGE)

c) If you change the domain of f_n from R to $(0,\frac12)$, find the function f the sequence converges pointwise .

$$f(0,\frac{1}{2}) - 0R$$

$$f(x) = 0$$

d) Does the sequence in part c) converge uniformily? Justify your answer.

Yes. We need to show
$$\forall \varepsilon > 0 \text{ } \exists \mathsf{M} \varepsilon \mathsf{N} \text{ } \forall \mathsf{n} \geq \mathsf{M} \text{ } \forall \mathsf{x} \text{ } |f_{\mathsf{n}}(\mathsf{x})| < \varepsilon$$
 Given ε choose $\mathsf{n} > \frac{\ln \varepsilon}{\ln \frac{1}{4}}$ then $\mathsf{n} \ln \frac{1}{4} \leq \ln \varepsilon$ and $\left(\frac{1}{4}\right)^{\mathsf{n}} \leq \varepsilon$ So $\left|\frac{\mathsf{x}^{\mathsf{2}\mathsf{n}}}{\mathsf{1} + \mathsf{x}^{\mathsf{2}\mathsf{n}}}\right| < \left(\frac{1}{4}\right)^{\mathsf{n}} < \varepsilon$

Scretchwork: kent
$$\frac{x^{2n}}{1+x^{2n}} < \mathcal{E}$$
 Since on $(o\frac{1}{2})$

$$\frac{x^{2n}}{1+x^{2n}} < \frac{x^{2n}}{1} < \left(\frac{1}{4}\right)^n \quad \text{it is sufficient to take } \left(\frac{1}{\ell_1}\right)^n < \mathcal{E}$$
So $n > \frac{\ln \mathcal{E}}{\ln \frac{1}{4}}$