Math 327 Fall 2016 Final Exam

Write clearly and legibly. Justify all your answers.
You will be graded for correctness and clarity of your solutions.
You may use one 8.5×11 sheet of notes; writing is allowed on both sides. You may use a calculator.

You can use elementary algebra and any result that we proved in class (but not in the homework). You need to prove everything else.

Please raise your hand and ask a question if anything is not clear.
This exam contains 8 pages and is worth a total of 90 points.
You have 1 hour and 50 minutes. Good luck

NAME:

PROBLEM 1

\qquad
PROBLEM 2 \qquad
PROBLEM 3 \qquad
PROBLEM 4 \qquad

PROBLEM 5 \qquad

PROBLEM 6 \qquad

Total \qquad

- Problem 1 (10 points) Prove that if $|r|<1$ then $\left\{r^{n}\right\}$ converges (do a full proof using the definition of limit of a sequence, do not just quote a result from class)
- Problem 2 (15 points) Decide if the following functions are uniformily continuous, and prove your answer.

1. $f:(0,+\infty) \rightarrow R, \quad f(x)=\frac{1}{x^{2}}$
2. $f:\left(\frac{1}{2}, 2\right) \rightarrow R, \quad f(x)=\frac{1}{x^{2}}$
3. Problem 3 (15 points) Prove that the image of a closed and bounded set under a continuous function is closed. That is, if $f: D \rightarrow R$ is continuous and D is closed and bounded, then $f(D)$ is closed.
4. Problem 4 (15 points) Given $f D \rightarrow R$ define what it means to say that $\lim _{x \rightarrow x_{0}} f(x)=l$. We have given two equivalent definitions, you can use either one of the two.

Given $f D \rightarrow R$ define what it means to say the f is continuous at $x_{0} \in D$.

Using the definition above, prove that $f: R \rightarrow R, \mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$ is continuous everywhere (do a full proof, do not just quote the result from class that sums and products of continuous functions are continuous. You can use limit laws, if you like).
5. Problem 5 (15 points) Say whether the following series diverge or converge and justify your answer.
a) $\sum_{i=1}^{\infty} \frac{\sqrt{i^{2}+1}}{i^{4}+5}$
b) $\sum_{i=1}^{\infty} \frac{10^{i}}{i!}$
c) $\sum_{i=1}^{\infty} a_{i}$ where $\left\{\begin{array}{l}a_{i}=\frac{1}{i} \quad \text { if } \mathrm{i} \text { is odd } \\ a_{i}=\frac{1}{i^{2}} \quad \text { if } \mathrm{i} \text { is even }\end{array}\right.$
6. Problem 6 (20 points) Consider the sequence of functions $\left\{f_{n}\right\}$, with $f_{n}: R \rightarrow R$ defined by $f_{n}(x)=\frac{x^{2 n}}{1+x^{2 n}}$
a) find the function f the sequence converges pointwise
b) does $\left\{f_{n}\right\}$ converge to f uniformily ? Justify your answer

(CONTINUED FROM PREVIOUS PAGE)

c) If you change the domain of f_{n} from R to ($0, \frac{1}{2}$), find the function f the sequence converges pointwise .
d) Does the sequence in part c) converge uniformily ? Justify your answer.

