Hw 7 Solutions

Problem 1

a) [3,4] U[5,6]

b) [1,2]u[5,6]u(11,12)

 $(0, \frac{1}{2})$

Problem 2

Suppose of [a, b] - or is continuous

Let S = f([a,b]), first we will prove S is

bounded below:

a) By contradiction assume 5 is not bounded below; then

Here is a sequence /xnfin [e,b] s.t f(xn) <-n

of x ny is bounded so it has a convergent subsequence

of Xnx on Xnx -0 Xo and xo E[P, b], since [P, b] is

closed; let yo = f(xo), then yo & S end f(xnx) -> yo = f(xo)

because f is conctinuous, so of $d(x_{n_X})$ is convergent and

therefore it must be bounded, but $J(X_{n_X}) \times -n_X \leq -K$, impossible

So S is bounded below, therefore it has an inf L

Now we shell prove S is closed: let of yny be a sequence

in S concerging to Yo, then yn = f(xn) and dxnf

is a seprence in [e,b] so it is bounded and Herefore

it has a convergent subsequence of xnx that must converge

to some xo E[e,b], therefore f(xnx)-of(xo) become f is continuous, but f(xn,)-0 y so y=f(xo) so yo is the image of xo E[e,b], therefore you S We cond find a sequence dyntins yn-ol. Since $\forall n \exists y_n \in S$ $l-\frac{1}{n} \prec y_n \prec l+\frac{1}{n}$, Since S is closed 1 must tlen be in S, so 1 = inf S

Problem 3

$$\int_{S} R - \circ R$$

$$f(x) = X$$

Problem 4

a) F not quarenteed if f is not continuous

$$E \times \int [1,2] - oR$$

$$\int (x) = \int \frac{1}{x-1} \int 22x \times 1$$

$$\int 0 \quad i \int x=1$$

b) T by the extreme value th

c) F, not puerenteed because (1,2) is not closed

$$\mathcal{E}_{\times} \qquad \mathcal{J}(1,2) - 0 \mathcal{R}$$

$$\mathcal{J}(\times) = \frac{1}{\times -1}$$

J)
$$F \in X \rightarrow [1,2] - 0 R$$

$$f(X) = \begin{cases} 1 & \text{if } 1 \leq X \leq 1/2 \\ 0 & \text{if } \frac{1}{2} < X \leq 2 \end{cases}$$

is bounded but not continuous

e)
$$F \in E \times f(1, 2) - \partial R$$

 $f(x) = X$

has no wex

5) T (The proced in class)

g) T (the image of a closed and bounded set under continuous function is closed, see proof of the extreme relie th)

h) T (seme as above)

Problem 5

Consider the function $\int [0, \pi] - 0R$ $\int (x) = x \sin x - 1$

f is continuous

$$f(0) = -\frac{1}{2} \times 0$$

$$f(\overline{1}) = \overline{1} - \frac{1}{2} > 0$$

by the intermediate veler theorem ther

must be
$$O \subset X \subset T \longrightarrow J + J(X) = 0$$

$$X_0 \sin X_0 = \frac{1}{2}$$

Problem 6

a)
$$f(0) - 0R$$

 $f(x) = \frac{1}{x}$ $f(0,0) = (1,+\infty)$

$$f R - \circ R$$

$$f(x) = \operatorname{ercten}(x)$$

$$f(R) = \left(-\frac{1}{z}, \frac{T}{z}\right)$$

Problem 7

a) yes Given
$$\varepsilon > 0$$
 we need to find $\varepsilon < 0$ $\varepsilon < 0$

$$|x^2 - y^2| = |x - y| |x + y| \le \frac{\varepsilon}{2} (|x| + |y|) \le$$

$$\frac{2}{2}$$
 $=$ $\frac{2}{2}$ $=$

work if we replace (0,1) with R as Domain for J. Afternatively if Ixn 4 & (0,1) and I yn 4 & (0,1) end (xn-9n) -00 ten $f(x_n) - f(y_n) = x_n^2 - y_n^2 = (x_n - y_n)(x_n + y_n)$ end $-2|x_n-y_n| \le (x_n^2-y_n^2) \le 2|x_n-y_n|$ 50 by the squeeze theorem $x_n^2 - y_n^2 - \infty$ b) No take $U_n = n$ $V_n = n + 1$ $U_n - V_n - o O$ but $f(v_n) - f(v_n) =$ $n^{3} - (n^{3} + 3n + 3\frac{1}{n} + \frac{1}{n^{3}}) \neq > 0$ Afternatively take $E = 1/2 \forall \delta$ we can find $n, q \in (0, +\sigma)$ $|x-y| < \delta$ but $|x^3-y^3| = |x-y||x^2+y^2+xy| > 1/2$ Take $x > \frac{1}{\sqrt{8}} y = x + \frac{\delta}{2} + \ln \frac{1}{2}$ $|x-y||x^2 + y^2 + xy| \ge \frac{5}{2}(x^2 + x^2 + x\delta + \frac{\delta^2}{2} + x^2 + x\frac{\delta}{2})$ $> \frac{\mathcal{E}}{2} \left(\frac{1}{\mathcal{E}} + \frac{1}{\mathcal{E}} + \text{other positive stuff} \right) > \frac{1}{2}$

c) Yes eilen	E teke $\delta = \frac{E}{2}$ then
	2
ig 1x-9/< 0	$ \xi(x) - \xi(y) = (2x + 1) - (2y + 1) =$
21x-y1<2 ==	

Problem 8

Given
$$\varepsilon$$
 take $\delta < \varepsilon$ then if $|x-y| < \delta$ $|y(x)-y(y)| \le M|x-y| < M \varepsilon = \varepsilon$