Hw 7

Read chapter 3 of the textbook.

Main skills:

- You need to know the extreme value and the intermediate value theorem.
- You need to know the definition of uniform continuity

Do the following problems:

- 1. Find the image of the following functions:
 - (a) $f[1, 2] \cup [3, 4] \to R$ f(x) = x + 2
 - (b) $f[1, 2] \cup [5, 7] \to R$

$$\begin{cases} x & \text{if } 1 \le x \le 6 \\ x+5 & \text{if } 6 < x \le 7 \end{cases}$$

(c)
$$f[2, \infty] \to R$$
 $f(x) = \frac{1}{x}$

- 2. Prove that a continuous function f defined on a closed and bounded interval has minimum.
- 3. Give an example of a continuous function f that has no minimum nor maximum value.
- 4. Decide if the following statements are True or False, and justify your answer.
 - (a) Every function $f[1, 2] \to R$ has maximum
 - (b) Every continuous function $f[1, 2] \to R$ has maximum
 - (c) Every continuous function $f(1, 2) \to R$ has maximum
 - (d) Every bounded function $f[1, 2] \to R$ is continuous
 - (e) Every continuous function with bounded image $f(1,2) \to R$ has maximum
 - (f) If $f[1, 2] \to R$ is continuous, then its image is an interval.
 - (g) If $f[1\,,\,2]\cup[3\,,\,4]\to R$ is continuous , then its image is closed.
 - (h) If $f[1, 2] \cup [3, 4] \rightarrow R$ is continuous, then its image is bounded
 - (i) If $f[1, 2] \cup [3, 4] \to R$ is continuous, then its image is an interval.
- 5. Prove that the equation $x \sin(x) = \frac{1}{2}$ has at least one real solution.
- 6. Give examples of a continuous function $f D \to R$ such that
 - (a) D is bounded but f(D) is not bounded
 - (b) D is closed but f(D) is not closed

- (c) D is bounded but f(D) is not closed
- (d) D is closed but f(D) is not bounded
- 7. Decide if the following functions are uniformily continuous. Prove your answer.
 - (a) $f(0,1) \to R$, $f(x) = x^2$
 - (b) $f(0, \infty) \to R$, $f(x) = x^3$
 - (c) $f(0,\infty) \to R$, f(x) = 2x + 1
- 8. Prove that if $fR\to R$, is such that there is a constant $M\ne 0$ such that for all x and y $|f(x)-f(y)|\le M|x-y|$ then f is uniformly continuous