Read chapter 3 of the textbook.

Main skills:

- You need to know the definition of limit of a function.
- You need to know the definition of continuous function

Do the following problems:

- 1. Let $f: D \to R$ and $g: D \to R$ be two functions, x_0 be a limit point for D and $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$.
 - Prove that $\lim_{x\to x_0} (f(x)+g(x)) = A+B$ using the ϵ , δ definition of limit
 - Prove that $\lim_{x\to x_0} (f(x)g(x)) = AB$ any way you want.
- 2. Prove that the following functions from their natural domain to R are continuous:
 - f(x) = x
 - g(x) = ax + b
 - $h(x) = x^n$, $n \in N$
 - $s(x) = \frac{1}{x}$
- 3. For each of the following statements say whether it is True or False: give a proof or a conterexample to justify your answer.
 - If the function f + g is continuous, then f and g are continuous functions.
 - If the functions f and g are continuous, then f+g is a continuous function
 - If f is a continuous function then f^2 (defined as $f^2(x) = f(x)^2$) is continuous
 - If f^2 is continuous then f is continuous.
 - If f is a continuous function then $f \circ f$ (the composition of f with itself) is continuous.
 - If $f \circ f$ is continuous then f is continuous.
- 4. Use the inequality : $|\sin x| \le |x|$ (you do not nered to prove this inequality) to prove that $\lim_{x\to 0}\sin x = 0$. Use this limit and the trigonometric identity: $\sin x \sin x_0 = 2\sin\frac{x-x_0}{2}\cos\frac{x+x_0}{2}$ to prove that $\lim_{x\to x_0}\sin x = \sin x_0$ and therefore the sin function is continuous.
- 5. Find an example of functions $f: R \to R$ and $g: R \to R$ such that f is discountinuous at 0 but fg is continuous at 0. Can fg be continuous at 0 if both f and g are discontinuous at 0?

6. Consider the function $f: R \to R$ defined by:

$$f(x) = \begin{cases} x & \text{if } x \in Q \\ 0 & \text{if } x \notin Q \end{cases}$$

- Is f continuous at 0?
- Is f continuous at 1?
- 7. Consider the function $f: R-\{1\} \to R$ defined by: $f(x) = \frac{x^2-1}{x-1}$ where is f continuous ?
- 8. Consider the function $f: R-\{0\} \to R$ defined by: $f(x)=\sin\frac{1}{x}$ where is f continuous ?