Hw 3

Read chapter 2 of the textbook.

Main skills:

- ullet You need to know the definition of limit of a sequence being ∞
- You need to know the definition of monotone and bounded sequence and relevant theorems.
- You need to know the definition of subsequence of a sequence and relevant theorems
- You need to know the definition of open and closed set and sequentially compact set in R.
- ullet You need to know the definition of the number e .

Do the following problems:

- 1. Prove that if $\{a_n\}$ and $\{b_n\}$ are sequences and $\lim_{n\to\infty} a_n = \infty$ and $\lim_{n\to\infty} b_n = \infty$ then $\lim_{n\to\infty} (a_n + b_n) = \infty$
- 2. Find the limit of the following sequences and give a proof:
 - (a) $\{a_n\}$, where $a_n = \frac{n^2}{1+n}$
 - (b) $\{b_n\}$, where $b_n = \sum_{i=1}^n i$
- 3. Find examples of sequences $\{a_n\}$ and $\{b_n\}$ such that $a_n \to 0$ and $b_n \to \infty$ and :
 - (a) $a_n \cdot b_n \to 0$
 - (b) $a_n \cdot b_n \to \infty$
 - (c) $a_n \cdot b_n \to 1$
 - (d) $\lim_{n\to\infty} (a_n \cdot b_n)$ DNE
- 4. For each of the following subsets of R say if it is open or closed (or both or neither) and if it is sequentially compact
 - (a) R
 - (b) $\{1, 2, 3\}$
 - (c) Z
 - (d) $(-\infty, 1)$
 - (e) $(-\infty, 1]$
 - (f) (-2,1)
 - (g) (-2,1]
 - (h) [-2,1]

- (i) $(-2,1) \cup (3,5)$
- (j) $[-2,1] \cup [3,5]$
- (k) $\bigcap_{i=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$

No proofs necessary

- 5. For each of the following sequences say if it is monotonically increasing , monotonically decreasing, bounded:
 - (a) $\{a_n\}$, where $a_n = \frac{1}{n}$
 - (b) $\{a_n\}$, where $a_n = n$
 - (c) $\{a_n\}$, where $a_n = \sin n$
- 6. Prove that a monotonically decreasing sequence converges if and only if it is bounded.
- 7. For each of the following sequences say whether it is convergent, it has limit ∞ or $-\infty$ or it has no limit, and justify your answer:
 - (a) $\{a_n\}$, where $a_n = \cos(\pi n)$
 - (b) $\{b_n\}$, where b_n is defined by : $b_1 = \sqrt{2}$
 - $b_{n+1} = \sqrt{2 + b_n}$
 - (c) $\{c_n\}$, where c_n is defined by : $c_1 = 1$ $c_{n+1} = 1 + 2c_n$
 - (d) $\{d_n\}$, where d_n is the following sequence : $-\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \frac{4}{5}, -\frac{5}{6}, \frac{6}{7}, \cdots$
- 8. Prove that if $\lim_{n\to\infty} a_n = \infty$ and $\{a_{n_k}\}$ is a subsequence of $\{a_n\}$ then $\lim_{k\to\infty} a_{n_k} = \infty$