Read chapter 2 of the textbook.

Main skills:

- You need to review induction
- You need to know some useful inequalities and identities.
- You need to know the definition of limit of a sequence, and be able to use it in proofs.
- You need to know the limit laws.

Do the following problems:

- 1. Prove Bernoulli inequality: $(1+x)^n \ge 1 + nx$ for all $n \in N$ and for all $x \in R$, x > -1.
- 2. Consider the following sequences:
 - (a) $\{a_n\}$ where : $a_1 = \sqrt{2}$ $a_{n+1} = \sqrt{2+a_n}$. Calculate a_3
 - (b) $\{b_n\}$ where: $b_n = \sum_{i=1}^n (i+2)$. Calculate b_4 .
 - (c) $\{c_n\}$ where : $c_n = \sum_{i=1}^n (n+2)$. Calculate c_4 .
- 3. Prove that if the sequence $\{a_n\}$ converges to a and c is a constant, then the sequence $\{ca_n\}$ converges to ca.
- 4. Find the limit c of the following sequences and give a proof the sequence converges to c:
 - (a) $\{a_n\}$, where $a_n = \frac{n+1}{n+2}$
 - (b) $\{b_n\}$, where $b_n = \frac{1 + (-1)^n}{n}$
 - (c) $\{c_n\}$, where $c_n = \frac{\sin n}{n}$
 - (d) $\{d_n\}$, where $d_n = \frac{2}{n} + (\frac{1}{2})^n$
 - (e) $\{e_n\}$, where $e_n = 2\frac{\sin n}{n^2} \frac{n+1}{n+2} + 3$
- 5. Prove that if $a_n \leq b_n$ for all n, and $\{a_n\}$ converges to a and $\{b_n\}$ converges to b then a < b

1