Hw 1

Read chapter 1 of the textbook.

Main skills:

- You need to know the axioms defining R.
- You need to be understand the definition of sup S and inf S and be able to calculate sup S and inf S.
- You need to be able to prove that given values are the sup or inf of a set S

. Do the following problems.

- 1. For each of the following subsets S of R answer the following questions (no proof needed):
 - (a) Is S bounded above?
 - (b) Is S bounded below?
 - (c) If S is bounded above calculate sup S. Is this sup a max ?
 - (d) If S is bounded below calculate inf S. Is this inf a min?
 - i) $S = \{1, 2, 3\}$
 - ii) $S = \{1 + n \mid n \in N\}$
 - iii) $S = \{1 + n \mid n \in Z\}$
 - iv) $S = \{1 + \frac{1}{n} \mid n \in N\}$
 - v) $S = \{\frac{n+1}{n+2} \mid n \in N\}$
- 2. Prove the following properties of the greatest lower bound of a set: (assume all sets have an inf)
 - (a) $\inf (A \cup B) = \min (\inf A, \inf B)$
 - (b) $\inf (A \cap B) \ge \max (\inf A, \inf B)$
 - (c) if $S \subseteq T$ then inf $T \leq \inf S$.
- 3. Give an example of sets A and B such that inf $(A \cap B) > \max$ (inf A, inf B)
- 4. Given $S = \{\frac{n}{n+1} \mid n \in N\}$ prove that sup S = 1 and inf $S = \frac{1}{2}$
- 5. Given $S = \{\frac{1}{n} + (-1)^n, | n \in N\}$ find $i = \inf S$ and prove it is the inf, and find $s = \sup S$ and prove it is the sup.