Textbook problems

Section 4.1:

3) b) Prove think 6 div n-n

Base case : if n=1 then it is true that 6 div 0

Since 0 = 0.6

Inductive step: essume 6 div k^3-k , that is $k^3-k=6m$ for some m in N; then $(k+1)^3-(k+1)=$

 $= \kappa^{3} + 3 \kappa^{2} + 3 \kappa + 1 - \kappa - 1 = \kappa^{3} + 3 (\kappa^{2} + \kappa) = 6 m + 3 (\kappa + \kappa) (*)$

Claim: k2+k is even; proved at the end.

Using the cleim $k^2+k=2t$ for sometin Nand $(K+1)^2-(K+1)=6m+3.2t$ (from (*))

= 6 (m+t) so 6 div (K+1) 2-(K+1).

Therefore if 6 div k2-k then 6 div (K+1)2-(K+1)

Proof of claim:

if k is even k is even (proved in

class) flerefore k?tk is even

if k is odd K = 2l + 1 for some lin Nand $K^2 + K = (2l + 1)^2 + (2l + 1) = 4l^2 + 6l + 2$ = $2(2l^2 + 3l + 1)$ so $K^2 + K$ is even

15) (1) d) Conjecture that tains d' (eax) = aneax
dx n
Proof
Bax cax: if n=1 and ain R deax = aeax
Inductive step: essume $\frac{d^k}{dx^k}$ (eak) = $e^k e^{ax}$ for some $k : n N$
then $\frac{d^{k+1}}{dx^{k+1}} \left(e^{\alpha x} \right) = \frac{d}{dx} \left(\frac{d^k}{dx^k} e^{\alpha x} \right) = \frac{d}{dx} \alpha^k e^{\alpha x} = \alpha^k \cdot \alpha e^{\alpha x} = \alpha^{k+1} e^{\alpha x}$
9xxx1 9x (9xx)
18 c) P(1) is true and the base case is proved correctly
The Inductive step correctly proves P(K)=>P(K+1) If KZZ
but the proof does not work for P(1) = >P(2)
"Assume all dogs in a set of 1 day have the same breed
and consider D= of d, dzf to be a set of two dops
All dogs in fligh have the same breed and all dops in
ddid here the same breed, but ddid end dded here no
common eforments o di and de may have different breed.

Section 4.2

1) c)
$$\forall n \geq 3 \quad \left(\frac{1+1}{n}\right)^n < n$$

Proof

Bose case: if
$$n=3$$
 $\left(\frac{1+1}{3}\right)^3 = \frac{64}{27} < 3$

Inductive step: assume
$$\binom{1+1}{k}^k \times k$$

then
$$\left(\frac{1+\frac{1}{K+1}}{K+1}\right)^{K+1} = \left(\frac{1+\frac{1}{K+1}}{K+1}\right) \left(\frac{1+\frac{1}{K+1}}{K+1}\right)^{K} \prec \left(\frac{1+\frac{1}{M}}{K+1}\right) \cdot \left(\frac{1+\frac{1}{M}}{K+1}\right)^{K}$$

$$\left(\text{Since }\frac{1}{k+1} < \frac{1}{k}\right)$$

$$= \frac{k + \frac{k}{k+1}}{\sqrt{k+1}} \sqrt{k+1} \qquad \left(\frac{\sin(e + \frac{k}{k+1})}{\sqrt{k+1}}\right)$$

16) Ynin N 3m odd 3 kin Nudof n= m 2 K
Proof by strong induction:
Base case: If n=1 tlen m=1 and k=0 and 1=1.20
Inductive step: assume the statement is true for n=1,2, t
for some tin N, and consider ttl
If the is odd then m= the and k=0 and the (th) 2
If the is even then the 2l for some lin N
and we can use the induction assumption on e;
l= 2k. m with Kzo modd, therefore
t+1= 2l= 2 +11
Now we need to proce m, k are unique that is
$n = 2^k m = 2^q p = 7 (k = q) \wedge (m = p)$ where k q are
non negative integers and mend pare odd
Proof: first we will show 2km=29p=>k=9
by contradiction assume 2 m = 29 p and k # 9.
if k = q then one say K is bigger than q
so 2 k-9 m = p but the number on the left
is even and the number on the right is odd
which is impossible, therefore we must here
K=9.
Now we will show $(2^k m = 2^9 p) \wedge (k=9) = 7 m=p$
$2^{k} m = 2^{m} \rho \iff m = \rho$ Sust by elgebre
(A groof by strong induction would also work)

Section 4.3

$$2 b) f_{1}=1$$

$$\delta_2 = 1$$

Base cox:
$$f_3 = 2$$
, $f_4 = 3$, $f_5 = 5$ so 5 div f_5

$$\int_{5(k+1)} = \int_{5k+5} = \int_{5k+4} + \int_{5k+3} = \int_{5k+3} + \int_{5k+2} + \int_{5k+3} = \int_{5k+6}$$

$$= 2(f_{5k+2} + f_{5k+1}) + f_{5k+2} = 2(f_{5k+1} + f_{5k}) + 2f_{5k+1}$$

$$f_{5k+2} + f_{5k+1} + f_$$

d)
$$\sum_{l=1}^{n} f_{2l-1} = f_{2n}$$

Base case: if
$$n=1$$
 $\sum_{c=1}^{1} f_{2c-1} = f_1 = 1 = f_2 = 1$

in N, then
$$\sum_{l=1}^{k+1} f_{2(l-1)} = \sum_{l=1}^{k} f_{2(l-1)} + f_{2(k+1)-1} = \sum_{l=1}^{k+1} f_{2(k+1)-1}$$

$$= \int_{2k} + \int_{2k+1} = \int_{2k+2} = \int_{2(k+1)}$$

$$|11) | Q_1 = 1$$

$$| Q_2 = 5 |$$

$$Q_{n+1} = Q_n + 2Q_{n-1}$$

$$\forall n in N \quad \alpha_n = 2^n + (-1)^n$$

Proof

Base cases: if
$$n=1$$
 $Q_1=1=2^{\frac{1}{2}}+(-1)^{\frac{1}{2}}$
if $n=2$ $Q_2=5=2^{\frac{1}{2}}+(-1)^{\frac{1}{2}}$

Inductive step: essume
$$Q_K = 2^k + (-1)^k$$
 and $Q_{K-1} = 2^{k-1} + (-1)^{k-1}$ for some $k \ge 2$

$$\frac{1}{k} = \frac{1}{2^{k+1}} + \frac{1}{2^{k}} + \frac$$

$$= 2^{K+1} + (-1)^{K+1}$$

Additional problems:

1. Prove that
$$\sum_{l=1}^{n} \frac{1}{l(l+1)} = \frac{n}{n+1}$$
Proof: Let $P(n)$ stand for $\sum_{l=1}^{n} \frac{1}{l(l+1)} = \frac{n}{n+1}$

Base case: if n = 1 $\sum_{k=1}^{\infty} \frac{1}{c(k+1)} = \frac{1}{2}$ and $\frac{1}{1+1} = \frac{1}{2}$, so $\beta(1)$ is true

Inductive step: Assume $\beta(k)$ that is $\sum_{k=1}^{\infty} \frac{1}{c(k+1)} = \frac{k}{(k+1)}$, then $\sum_{k=1}^{k+1} \frac{1}{c(k+1)} = \sum_{k=1}^{\infty} \frac{1}{c(k+1)} + \frac{1}{(k+1)(k+2)} = \frac{k}{(k+1)(k+2)} = \frac{k}{(k+1)(k+2)} = \frac{k+1}{(k+1)(k+2)} = \frac{k+1}{(k+1)(k+2)}$ therefore $\beta(k+1)$ is true

2. Let x be a real number, with x > -1, and let P(n) stand for $(1+x)^n \ge 1 + nx$. We want to prove $\forall n \ge 0$ P(n) by induction on n.

Base case. . P(0) is $(1+x)^0 \ge 1+0x$ which simplifyes to $1\ge 1,$ obviously true. (Note that we start at n=0)

Induction step:prove $P(k) \Rightarrow P(k+1)$. Assume P(k), prove P(k+1). In detail this means assume: $(1+x)^k \ge 1+kx$ (and x > -1) and prove $(1+x)^{k+1} \ge 1+(k+1)x$. Start from the induction hypothesis $(1+x)^k \ge (1+kx)$ and multiply both sides of the inequality by (1+x) (remember that (1+x) is positive, this is where we use the hypothesis x > -1) to get $(1+x)^k (1+x) \ge (1+kx)(1+x)$ and therefore $(x)^k (1+x)^{k+1} \ge 1+x+kx+kx^2$ (by multiplying out the right hand side)

(*) $(1+x)^{k+1} \ge 1+x+kx+kx^2$ (by multiplying out the right hand side). The right hand side of (*) is equal to $1+(k+1)x+kx^2$ and it is greater than or equal to 1+(k+1)x since $kx^2 \ge 0$. Therefore $(1+x)^{k+1} \ge 1+(k+1)x$ and we are done

- 3. Guess: $3^0 + 3^1 + 3^2 + \dots + 3^n = \frac{3^{n+1}-1}{2}$. Call this statement P(n). Proof by induction:

 - P(k) \Rightarrow P(k+1): Assume $3^0 + 3^1 + 3^2 + \dots + 3^k = \frac{3^{k+1}-1}{2}$ for some $k \geq 0$. (this is P(k)) then $3^0 + 3^1 + 3^2 + \dots + 3^k + 3^{k+1} = \frac{3^{k+1}-1}{2} + 3^{k+1}$. (by the induction hypothesis) = $\frac{3 \cdot 3^{k+1}-1}{2} = \frac{3^{k+1}-1}{2}$ (reading the first and last term of this chain of equalities we have P(k+1) and we are done).

4. Prove that there are u_{n+1} (the nth Fibonacci number) different ways to tile a 1xn board using squares (i.e. 1x1 tiles) and dominoes (i.e. 1x2 tiles). Proof by induction.

Base cases: if n = 1 a 1x1 board can be tiled in only 1 way by using a 1x 1 square; since $u_2 = 1$ the statement is true for n = 1.

if n=2 a 2x1 board can be tiled in 2 ways either by using two 1x 1 squares, or by using a 1x2 tile; since $u_3=u_1+u_2=2$ the statement is true fr n=2.

Induction step: assume the statement is true for n=k and n=k-1, consider a 1x (k+1) board: we can start tiling it either by putting down a 1x1 square, in which case we are left with k squares to cover, that is a 1xk board, and by induction assumption we can do it is u_{k+1} ways, or we can start by putting down a domino tile, in which case we are left with k-1 squares to cover, that is a 1x(k-1) board, and by induction assumption we can do it is u_k ways. In total we have $u_{k+1} + u_k = u_{k+2} = u_{k+1+1}$ ways.

5. Consider the following sequence $a_{n m}$ where

$$a_{n\,1}=1 \text{ for all } n\in N$$

$$a_{1\,m}=0 \text{ for all } m\geq 2$$

$$a_{n+1\,m+1}=a_{n\,m}+a_{n\,m+1} \text{ for all } n,\,m\in N$$

$$\text{Prove that } \forall n\in N(x+y)^n=\sum_{i=0}^n a_{n+1} \text{ dist} x^{n-i}y^i$$

$$a_{n+1}=0 \text{ for all } n\in N$$

In order to prove this we first need to prove

on ann = 1 \(\text{ fm m} \) m m \(n = 2 \) \(\text{ann} = 0 \)

Prove by induction

If \(n = 1 \) \(\text{ann} = 1 \) \(\text{and} \(\text{a}_{1m} = 0 \) \(\text{for m} > 1 \) \(\text{by definition of ann} \)

Induction step \(\text{assume} \) \(\text{assume} \) for some \(n \) \(\text{ann} = 1 \) \(\text{and} \) \(\text{ann} = 0 \)

Then \(\text{anti nti} = \text{ann} + \text{ann} + \text{ann} = 0 \)

\(\text{anti m} = \text{ann} = \text{ann} = 0 \)

Proof of $(n+y)^n = \sum_{\ell=0}^n \alpha_{n+1} \ell + j n^{n-\ell} y^{\ell}$ by induction
Base case: if $n=1$ $(x+y) = \sum_{k=0}^{1} a_{2k} + \sum_{k=0}^{1-k} a_{$
Induction step: assume $(x+y)^k = \sum_{c=0}^{k} a_{n+1} c+1 x^{n-c} y^c$ $(x+y) = (x+y)(x+y)^k = (x+y) \sum_{c=0}^{k} a_{k+1} c+1 x^{k-c} y^c =$
$ \frac{1}{k} \sum_{k=0}^{k} \frac{(x+y)}{x^{k+1}-l} \frac{(x+y)}{y^{l}} = \frac{(x+y)}{2} \sum_{k=0}^{k} \frac{(x+y)}{x^{k+1}} \frac{(x+y)}{y^{l}} = \frac{(x+y)}{x^{k+1}} \frac{(x+y)}{y^{k+1}} \frac{(x+y)}{y^{k+1}} = \frac{(x+y)}{x^{k+1}} \frac{(x+y)}{y^{k+1}} \frac{(x+y)}{y^{k+1}} \frac{(x+y)}{y^{k+1}} = \frac{(x+y)}{x^{k+1}} \frac{(x+y)}{y^{k+1}} \frac{(x+y)}{y^{k$
= 2 9 K+1 (4) 2 K+1 - L y (+ 2 a K+1) (x y) (= 0
$= Q_{K+1} + \sum_{i=1}^{K} (Q_{K+1} + Q_{K+1} +$
$Q_{K+2} = Q_{K+2} Q_{K+2}$
K+1 = Q K+2 L+1 X Y
(= ♥)
(If the algebra above is confusing you can try to write down
all the sums so \(\sum_{(=0)}^{k} a_{k+1} \dots
$Q_{K+1,1} \times^{k+1} + Q_{K+1,2} \times^{k} y + Q_{K+1,3} \times^{k-1} y^{2} + \cdots + Q_{K+1,K_{1}} \times^{k} y^{k} + \cdots$
+ QK+11 2 K 4 + QK+1 2 X 4 + QK+1 K 2 4 + QK+1 K+1 4 4 1 K+1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1