Spring 2018 Math 300 Midterm exam

Write clearly and legibly. Justify all your answers.
You will be graded for correctness and clarity of your solutions.
You may use one 8.5×11 sheet of notes; writing is allowed on both sides. You may use a calculator.

You can use elementary algebra and any result that we proved in class (but not in the homework). You need to prove everything else.

Please raise your hand and ask a question if anything is not clear.
This exam contains 7 pages and is worth a total of 45 points.
You have 50 minutes. Good luck

NAME:

NAME:

PROBLEM 1 (12 points) -------

PROBLEM 2 (9 points) \qquad

PROBLEM 3 (8 points) \qquad

PROBLEM 4 (8 points) ---------

PROBLEM 5 (8 points) --------

Total

- Problem 1 In this problem 3 div a means 3 divides a and 3 notdiv a means 3 does not divide a.
- Write a statement equivalent to the negation of

$$
\forall x \in Z, \forall y \in Z, 3 \operatorname{div} x y \Leftrightarrow(3 \operatorname{div} x \vee 3 \operatorname{div} y)
$$

that does not contain the negation symbol \neg (not). You are allowed to use notdiv.

- Prove or disprove that

$$
\forall x \in Z, \forall y \in Z, 3 \operatorname{div} x y \Leftrightarrow(3 \operatorname{div} x \vee 3 \operatorname{div} y)
$$

- Prove or disprove that

$$
\forall x \in Z, \forall y \in Z, 3 \operatorname{div} x y \Leftrightarrow(3 \operatorname{div} x \wedge 3 \operatorname{div} y)
$$

- Problem 2 Define a function $f: Z \rightarrow Z$ by:

$$
f(x)= \begin{cases}x+2 & \text { if } x<0 \\ x-1 & \text { if } x \text { is odd and } x \geq 0 \\ x-3 & \text { if } x \text { is even and } x \geq 0\end{cases}
$$

a) Is f injective? (Give a proof).
b) Is f surjective ? (Give a proof).

- Problem 3 Use induction to prove that $\sum_{i=1}^{2 n}(-1)^{i} i=n$
- Problem 4 For each of the following statements circle whether the statement is true or false and give a proof.

1. $\exists x \in Z, \quad \forall y \in Z, x-y=10$.

TRUE FALSE

2. $\forall x \in Z, \quad \exists S \in P(Z), \forall w \in S, x+w=0$ (Here $P(Z)$ is the power set of Z).

TRUE FALSE

- Problem 5 Let A, B, C be sets. Prove that

$$
A \times(B \cap C)=(A \times B) \cap(A \times C)
$$

