SPRING 2018 MATH 300 FINAL EXAM

Write clearly and legibly. Justify all your answers.

You will be graded for correctness and clarity of your solutions.

You may use one 8.5×11 sheet of notes; writing is allowed on both sides. You may use a calculator.

You can use elementary algebra and any result that we proved in class (but not in the homework). You need to prove everything else.

Please raise your hand and ask a question if anything is not clear. This exam contains 9 pages and is worth a total of 70 points.

You have 1 hr and 50 minutes. Good luck

NAME:____

PROBLEM 1 (8 points) _____

PROBLEM 2 (6 points) _____

PROBLEM 3 (8 points) _____

PROBLEM 4 (12 points) _____

PROBLEM 5 (8 points) _____

PROBLEM 6 (8 points) _____

PROBLEM 7 (12 points) _____

PROBLEM 8 (8 points) _____

Total _____

• **Problem 1** Given sets A, B, C in some universe U prove that

$$(A - (B \cup C))^c = (A - B)^c \cup (A - C)^c.$$

First we shall prove
$$(A - (BUC))^{C} \leq (A - B)^{C} \cup (A - C)^{C}$$
: assume
 $x \in (A - BUC)^{C}$, then $x \notin A - (BUC)$ so $x \notin A \cup X \in BUC$
If $x \notin A$ then $x \notin A - B$ so $x \in (A - B)^{C}$ so $x \in (A - B)^{C} \cup (A - C)^{C}$
if $x \in BUC$ then $x \in B$ or $x \in C$; if $x \in B$ then $x \notin A - B$ so again
 $x \in (A - B)^{C} \cup (A - C)^{C}$; if $x \in C$ then $x \notin A - C$ so $x \in (A - C)^{C}$ and
therefore $x \in (A - B)^{C} \cup (A - C)^{C}$
Now we shall prove $(A - B)^{C} \cup (A - C)^{C} \leq (A - (BUC))^{C}$:
assume $x \in (A - B)^{C} \cup (A - C)^{C}$; then $x \in (A - B)^{C}$ or $x \in (A - C)^{C}$
if $x \in (A - B)^{C}$ then $x \notin A - B$ so $x \notin A$ or $x \in B$
if $x \notin A$ then $x \notin A - (BUC)$ so $x \in (A - (BUC))^{C}$
if $x \in B$ then $x \notin B$ and $x \notin A - (BUC)$ so $x \in (A - (BUC))^{C}$
if $x \in (A - C)^{C}$ the argument is similar

 $\mathbf{2}$

 $\bullet \ {\bf Problem \ 2} \ \ {\rm Write \ a \ statement \ equivalent \ to \ the negation \ of }$

$$\exists x \in A \, \forall y \in B \, (x \le y) \Rightarrow (\exists z \in C \, (z > x) \Rightarrow (z > y \land z = y))$$

that does not use the negation symbol \neg

• **Problem 3** Prove or disprove $\forall a \in \mathbb{Z}, \frac{a^2-a}{2}$ is even if and only if a or a-1 are divisible by 4.

$$\frac{Q^2-Q}{2} = 2k \text{ for some } k \in \mathbb{Z} <=> Q \equiv 0 \text{ or } Q \equiv 1 \mod G$$
 is true
Note $\frac{Q^2-Q}{2} = 2k \text{ for some } k <=> Q^2-Q \equiv 4k <=> Q^2-Q \equiv 0 \mod k$
First prove $Q \equiv 0 \lor Q \equiv 1 \mod d \Rightarrow Q \equiv 0 \mod d$
if $Q \equiv 0 \mod d$ then $Q^2-Q \equiv 0^2-0 \equiv 0 \mod d$
if $Q \equiv 1 \mod d$ then $Q^2-Q \equiv 1^2-1 \equiv 0 \mod d$
Then prove $Q^2-Q \equiv 0 \mod d =>(Q \equiv 0 \lor Q \equiv 1 \mod d)$

By contreposition

$$1 e \equiv 2 \mod 4$$
 $e^2 - a \equiv 4 - 2 \equiv 2 \not\equiv 0 \mod 4$
 $1 e \equiv 2 \mod 4$ $e^2 - a \equiv 9 - 3 \equiv 2 \not\equiv 0 \mod 4$
 $1 e \equiv 3 \mod 4$ $e^2 - a \equiv 9 - 3 \equiv 2 \not\equiv 0 \mod 4$

- **Problem 4** A student is trying to prove that the set
- A ={S|S \subseteq N and |S| = 2} (that is A is the set of all subsets of N that have exactly two elements) is denumerable. Below are some of his attempts to find a bijection f between A and a denumerable set. For each function f that the student has tried to define below say whether it is a well defined function that is a bijection or not. If it is not, explain why.

$$- fA \to N \times N \quad f(\{x, y\}) = (x, y)$$

Not well defined; elements of a set are not ordered so is f(41,25) = (1,2) or (2,1)?

$$- \ fA \rightarrow N \times N \quad f(\{x,y\}) = (\min(x,y),\max(x,y))$$

Not surjective since for example $(2, 1) \notin Im(t)$

$$-fA \to N \quad f(\{x,y\}) = x + y$$

Not injective
$$f(41,65) = f(43,65)$$

• Problem 5 Consider the sequence $\{a_n\}$ defined by: $a_1 = \mathscr{X} \xrightarrow{\supset} a_2 = 2$ $a_3 = \mathscr{X} \xrightarrow{\supset} a_{n+1} = 4a_n - 5a_{n-1} + 2a_{n-2}$ if $n+1 \ge 4$ Prove that $\forall n \ge 1$, $a_n = 3n + 4 - 2^{n+1}$

By induction on n

Base case

If n=1 then 3+4-4=3 If n=2 then 6+4-8=2 If n=3 then 9+4-16=-3

Induction step: assume the formula above is true for
$$a_{k-2}a_{k-1}$$

and a_k , for some $k \ge 3$, then $a_{k+1} = (a_k - 5a_{k-1} + 2a_{k-2})^2$
= $4(3k+4-2^{k+1}) - 5(3(k-1)+4-2^k) + 7(3(k-2)+4-2^{k-1})^2$
= $17k - 15k + 6k + 16 + 15 - 17 - 20 + 8 - (72^{k+1} + 52^k - 2^k)^2$
= $3k + 7 - 2 \cdot 2^{k+2} + 2^{k+2} = 3(k+1) + (1 - 2^{k+1+1})^2$

• Problem 6 Solve $3 \cdot 7^{1000} x \equiv 2005 \mod 10$

$$\frac{1}{7} = (49)^{500} \equiv (9)^{500} \equiv (-1)^{500} \equiv 1 \mod 10$$

$$2005 \equiv 5 \mod 10$$

$$3x \equiv 5 \mod 10$$

by trial and error X=5
So all integer solutions are x = 5 + 10K K \in 2

• **Problem 7** An equivalence relation R on a set A is a subset of $A \times A$ that has the following properties; complete the sentences below :

- Reflexive, that is $\forall q \in A \quad Q \land q \quad Q \cap (Q, Q) \in R$

- Symmetric, that is
$$\forall a, b \in \mathbb{R}$$
 $a \cap b = b \cap a \circ c$
 $(a, b) \in \mathbb{R} = b \cap a \circ c$

- Transitive, that is
$$\forall a, b, c \in \mathcal{R}$$
 $(a, b, b, b, c) = \gamma a, c c$
 $(a, b) \in \mathcal{R} \land (b, c) \in \mathcal{R} = \gamma (a, c) \in \mathcal{R}$

Given that R_1 and R_2 are two equivalence relations on a set A, prove that $R_1 \cap R_2$ is an equivalence relation on A.

We need to show RINRZ is reflexile Given a EA, since (a, a) ER, and (a, a) ER2 then (a, a) ER, M2 so R, MR2 is reflexive if (ab) eRINRZ then (ab) eRI so (ba) eRI and $(a b) \in \mathbb{R}_2$ so $(b a) \in \mathbb{R}_2$, therefore $\mathbb{R}_1 \cap \mathbb{R}_2$ is symmetric Given $a_1b_1 \in \mathbb{R}$ if $(a,b) \in \mathbb{R}_1 \cap \mathbb{R}_2$ and $(b,c) \in \mathbb{R}_1 \cap \mathbb{R}_2$ then $(a,b) \in \mathbb{R}_1$ and Given a, b e A $(b_1c) \in R_1$ so $(a,c) \in R_1$ and $(a,b) \in R_2 \land (b,c) \in R_2$ so $(a,c) \in R_2$ so (a, c) = RIAR2 to RIAR2 is transitive If R_1 is = mod 4 in Z and R_2 is = mod 6 in Z $R_1 \cap R_2$ b (=) 4 div b-a ∧ 6 div b-a so RiAR2 is = mod 12 since b-a= 4K=6h for some h, KEZ => ZK=3h 50 h is even therefore h=2l for some let and b-a=62 l so b=a modiz viewrse if b= a mod 12 b-a= 12 k for some kez so gdv b-a n 6 div b-a, so Q=b mod (and a=b mod b RIURZ is not an equivalence repation since 2=6 mod (and 6=0 mod 6 So (7,6) ER,UR, and (6,0)ER,UR 60+ 2 ±0 mod 40r 6 So (7,0) ∉ P, UR,

prove that
$$1^{-1} = 1$$
 and $(p-1)^{-1} = p-1$ 2
prove that $x^{-1} = x = 3 \times = 1 \cup x - \cdots$
 $(x^{2} - 1)$
Give an example that shows' 2 is not true if p is not prime
 $3^{-1} = 5$ in 2_{12} 3

• **Problem 8** Given $m \in \mathbb{Z}, m > 1$, prove that

.

 $\forall a \in Z, \forall b \in Z, \forall c \in Z, a \equiv b \bmod m \Rightarrow ca \equiv cb \bmod m$

ASSUME Q = b mod m then m div a-b so Q - b = mk for some kez therefore CQ-cb = m(ck) Qnd so cq = cb mod m

Is the converse true ? That is prove or disprove that

 $\forall a \in Z, \, \forall b \in z, \forall c \in Z, \, ca \equiv cb \ \mathrm{mod} \ m \Rightarrow a \equiv b \ \mathrm{mod} \ m$

No C=0 is a problem, but even if we let c to 3.2=3.4 mod 6 but 2 \$4.4 mod6

• **Problem 8** Given $m \in Z, m > 1$, recall that for $a \in Z_m$ we denote by a^{-1} the inverse of a in Z_m .

– Show that $1^{-1}=1$ and $(m-1)^{-1}=m-1$ in \mathbb{Z}_m , that is 1 and m-1 are their own inverse in $\mathbb{Z}_m.$

$$|*| = | \equiv 1 \mod m$$

 $(m-1)(m-1) = m^2 - 2m + 1 \equiv 1 \mod m$

– Prove that, if m is prime, 1 and m-1 are the only elements of Z_m that are their own inverse (Hint : x is its own inverse if $x^2 \equiv 1 \mod m$)

$$\chi^2 \equiv 1 \mod m \iff m \dim \chi^2 - 1 \equiv (\chi + 1)(\chi - 1) \equiv 2$$
 (since m is
prime) $\mod \dim (\chi + 1)$ or $\mod \dim (\chi - 1) \equiv 2$
 $\chi \equiv -1 \equiv m - 1 \mod m = 1$

– Give an example to show that, if m is not prime, there maybe elements $a \in Z_m$ such that $a = a^{-1}$ and $a \neq 1$ and $a \neq m - 1$