Write clearly and legibly. Justify all your answers.
You will be graded for correctness and clarity of your solutions.
You may use one 8.5×11 sheet of notes; writing is allowed on both sides. You may use a calculator.

You can use elementary algebra and any result that we proved in class (but not in the homework). You need to prove everything else.

Please raise your hand and ask a question if anything is not clear.
This exam contains 9 pages and is worth a total of 70 points.
You have 1 hr and 50 minutes. Good luck

NAME:

PROBLEM 1 (8 points) -------
PROBLEM 2 (8 points) \qquad
PROBLEM 3 (12 points) \qquad

PROBLEM 4 (8 points) \qquad
PROBLEM 5 (8 points) \qquad

PROBLEM 6 (8 points) \qquad
PROBLEM 7 (10 points) \qquad

PROBLEM 8 (8 points) \qquad

Total \qquad

- Problem 1 Given sets A, B, C in some universe U prove that

$$
((A \cup B)-C)^{c}=(A-C)^{c} \cap(B-C)^{c} .
$$

First we shall prove $((A \cup B)-C)^{C} \leq(A-C)^{C} \cap(B-C)^{C}$
assume $x \in((A \cup B)-C)^{C}$, then $x \notin(A \cup B)-C$ so $x \notin A \cup B \vee x \in C$ if $x \notin A \cup B$ then $x \notin A A \times \notin B$ so $x \notin A-C$ and $x \notin B-C$ so $x \in(A-C)^{C}$ and $x \in(B-C)^{C}$ and there fore $x \in(A-B)^{C} \cap(B-C)^{C}$. if $x \in C$ again $x \notin A-C$ and $x \notin B-C$ so $x \in(A-C)^{C}$ and $x \in(B-C)^{C}$ and therefore $x \in(A-C)^{C} \cap(B-C)^{C}$
Now we shall prove $(A-C)^{c} n(B-C)^{C} \leq((A \cup B)-C)^{C}$
Assume $x \in(A-C)^{C} \cap(B-C)^{C}$ then $x \notin A-C$ and $x \notin B-C$
If $x \in C$ then $x \notin(A \cup B)-C$ so $x \in((A \cup B)-C)^{C}$
If $x \notin c$ then it must be the case that $x \notin A$ and $x \notin B$
so $x \notin A \cup B$ so $x \notin A \cup B-C$ and $x \in(A \cup B-c)^{c}$

- Problem 2 Write a statement equivalent to the negation of

$$
\forall x \in A \exists y \in B(x>y) \Rightarrow(\exists z \in C((z>x) \Rightarrow(z>y \vee z=0)))
$$

that does not use the negation symbol \neg

My mistake for not using enough parentheses
Some people reed it es

$$
\forall x \in A \exists y<B(x>y \Rightarrow
$$

Negation
$\exists x \in A \quad \forall y \in B(x>y \wedge \forall z \in C(z>x \wedge z \leq y \wedge z \neq 0))$
Some people reed it as
$(\forall x \in A \exists y \in B x>y) \Rightarrow\left(\exists z \in C^{\prime}(z>x \Rightarrow(z>y \vee z=0))\right.$
Negation
$\forall x \in A \quad \exists y \in B x>y \wedge \forall z \in C(z>x \wedge z \leqslant y \wedge z \neq 0$,

Both received full credit

$\forall x \in z$

- Problem 3 Prove that 3 div $x \Leftrightarrow 3$ div x^{3}

First prove $3 \operatorname{div} x \Rightarrow 3 \operatorname{div} x^{3}$
Assume $x \in z$ and 3 div x, then $x=3 k$ for some $k \in z$ and $x^{3}=27 x^{3}=3\left(9 x^{3}\right)$ so 3 div x^{3}

Then prove $3 \operatorname{div} x^{3} \Rightarrow 3 \operatorname{div} x$
By contraposition assume $x \in z$ and 3 does not divide x, then $x \equiv 1$ or $x \equiv 2 \bmod 3$ and therefore $x^{3} \equiv 1$ or $2 \bmod 3$
so 3 does not divide x^{3}

A Pternetive proof: 3 is prime assume 3 div $x \cdot x \cdot x$ then 3 hes
to divide one of the factors in the product $x \cdot x \cdot x$ so 3 div x

Use the result above to prove that $\sqrt[3]{3}$ is irrational
By contradiction assume $\sqrt[3]{3}=\frac{m}{n}$ with $\frac{m}{n}$ reduced
then $3 n^{3}=m^{3}$ so 3 div m^{3} and therefore 3 div m, so
$m=3 k$ for some $k \in Z$ and $3 n^{3}=(3 k)^{3}=27 k^{3}$ so
$n^{3}=3\left(3 k^{3}\right)$ and 3 div n^{3} and therefore n. so 3 is a
common factor of m and n and there fore $\frac{m}{n}$ is not reduced, contradiction.

- Problem 4 Prove that the set $\mathrm{A}=\{S \mid S \subseteq N$ and $|S| \leq 1\}$ (that is A is the set of all subsets of N that have zero or one element) is denumerable.

$$
\begin{aligned}
& A=\{\phi,\{1\}, 22\},\{3\}, \cdots \cdots\} \\
& \text { Define } \begin{array}{rl}
f & N=\begin{array}{ll}
0 & A \\
\phi & \text { i } n=1 \\
\{n-1\} & \text { otherwise }
\end{array} \\
& f(n)=\left\{\begin{array}{l}
\text { D }
\end{array}\right.
\end{array} \\
& \text { Define } \\
& \text { g } A-0 N \\
& g(S)=\left\{\begin{array}{l}
1 \text { if } S=\phi \\
n+1 \text { if } S=\{n\}
\end{array}\right. \\
& g(f(n))=\left\{\begin{array}{l}
g(\phi)=1 \text { mg } \\
g(\{n-1
\end{array} \quad \text { if } n>1 \text {, } \quad \text { so } \forall n \in N \quad g(f(n))=n\right. \\
& f(\rho(s))=\left\{\begin{array}{l}
f(1)=\phi \text { if } s=\phi \\
f(n+1)=\{n\}=s
\end{array} \quad \text { if } s=\{n\} \quad \text { so } \forall s \in A \quad f(\rho(s))=s\right.
\end{aligned}
$$

Therefore $g=f^{-1}$ and f is a bijection, so A is denumerable

- Problem 5 Prove that if p and q are distinct primes then $\forall a \in Z, \forall b \in z, a \equiv b \bmod p q \Leftrightarrow(a \equiv b \bmod p \wedge a \equiv b \bmod q)$

Given $a, b \in z$
First prove $Q \equiv b \bmod p q \Rightarrow(Q \equiv b \bmod p \wedge Q \equiv b \bmod q)$

Assume $a \equiv b$ mod $p q$ then $p q \operatorname{div} Q-b$ so
$Q-b=$ QQik for some $k \in Z$, so p div $Q-b$ and therefore $a \equiv b$ mod p $a n d \quad q \operatorname{div} Q-b$ so $Q \equiv b \bmod Q$

$$
\begin{aligned}
& \text { Now prove } Q \equiv b \bmod \rho \wedge Q \equiv b \bmod q \Rightarrow a \equiv b \bmod p q \\
& \text { Assume } p \operatorname{div}(Q-b) \text { and } q \operatorname{div}(a-b) \text { so } a-b=k p=h Q \text { for some } h, k \in Z \\
& \text { Then } k p=h q \text { so } p \text { divhq and } p \text { does not divide } q \text {, so } \\
& p \text { divides } h \text {, therefore } h=S \underline{p} \text { for some } s \in Z \\
& \text { and } Q-b=s p q \text { so } p q \text { div } Q-b \text { and therefore } Q \equiv b \text { mod pa, } \\
& \text { Give a counterexample to show this theorem is not true if } p \text { and } q \text { are } \\
& \text { not prime } \\
& 6 \equiv 2 \bmod 4 \quad 6 \pm 2 \bmod 2 \quad \text { but } 6 \neq 2 \bmod 8
\end{aligned}
$$

- Problem 6 Find all integer solutions of $3^{122} x \equiv 5 \bmod 11$

11 is prime $3^{10} \equiv 1 \bmod 11 \quad 3^{122}=3^{2}\left(3^{10}\right)^{12} \equiv 9 \bmod 11$

$$
\begin{aligned}
& 9 x \equiv 5 \bmod \| \text { hes only on solution in } z_{11} \text { by trie) and } \\
& \text { error } x=3 \\
& \text { so } x=3+k 11 \text { a }
\end{aligned}
$$

- Problem 7 Consider the relation R on Z defined by

$$
a R b \text { iff } 3 a+3 b \equiv 0 \bmod 6
$$

Prove R is an equivalence relation.
$a R Q$ since $3 Q+3 Q=6 Q \equiv 0 \bmod 6$
$Q R b \Rightarrow b R a$ since if $3 a+3 b \equiv 0 \bmod 6$ then $3 b+3 a \equiv 0 \bmod 6$
$Q R b \wedge b R C \Rightarrow Q R C$ since $3 a+3 b \equiv 0 \bmod 6 \quad$ and $3 b+3 c \equiv 0 \bmod 6$

$$
\text { implies }(3 a+3 b)+(3 b+3 c)=3 a+6 b+3 c \equiv 3 a+3 c \equiv 0 \bmod 6
$$

List all equivalence classes for R
$b \in[a]$ ifs $3 a+3 b \equiv 0 \bmod 6$ ifs $3 Q \equiv-3 b \bmod 6$ iff $3 a \equiv 3 b \quad \bmod 6$ ifs $Q \equiv b \bmod 2$
So there are only 2 equivalence c lesses
$[0]=\operatorname{EVEN}$
$[1]=O D D$

- Problem 8 Consider the sequence $\left\{a_{n}\right\}$ defined by:
$a_{1}=2$
$a_{2}=3$
$a_{3}=2$
$a_{n+1}=4 a_{n}-5 a_{n-1}+2 a_{n-2}$ if $n+1 \geq 4$
Prove that $\forall n \geq 1, a_{n}=3 n+1-2^{n}$

By induction
Base case: if $n=1 \quad 3+1-2=2=2$,

$$
\begin{array}{ll}
\text { if } n=2 & 6+1-4=3=Q_{2} \\
\text { if } n=3 & 9+1-8=2=Q_{3}
\end{array}
$$

Induction step: assume the formula true for Q_{k-2}, Q_{k-1}, Q_{k} for some $k \geqslant 3$
then $a_{k+1}=4\left(3 k+1-2^{k}\right)-5\left(3(k-1)+1-2^{k-1}\right)+2\left(3(k-2)+1-2^{k-2}\right)=$ $=12 k+4-2 \cdot 2^{k+1}-15 k+15-5+5 \cdot 2^{k-1}+\underline{6 k}-12+2-2^{k-1}=$ $=3 k+4-2 \cdot 2^{k+1}+4 \cdot 2^{k-1}=$
$=3(k+1)+1-2^{k+1}$

