Math 300 Spring 2017 Midterm Exam	
Write clearly and legibly. Justify all your answers. You will be graded for correctness and clarity of your solutions. You may use one 8.5 x 11 sheet of notes; writing is allowed on both sides.	
You may use a calculator. You can use elementary algebra and any result that we proved in class. You	
need to prove everything else. Please raise your hand and ask a question if anything is not clear.	
This exam contains 5 pages and is worth a total of 50 points. You have 50 minutes. Good luck	
NAME:	
IVANILI.	
PROBLEM 1 (10)	
PROBLEM 2(10)	
PROBLEM 3 (10)	
PROBLEM 4 (10)	
PROBLEM 5 (10)	
Total	
1	

2017-05-04 17:39:20 1/6 3017SpMidSol (#3)

Problem 1: Let A and B, C be sets.

1. (5 points) Prove that $(A - B) \cap (A - C) \subseteq A - (B \cap C)$

Assume
$$x \in (A-B) \cap (A-c)$$
 then $x \in (A-B) \in M$
 $x \in (A-c)$ Therefore $x \in A$ and $x \notin B$ and $x \notin C$
so $x \in A$ and $x \notin B \cap C$ so $x \in A-(B \cap C)$

2. (7 points) Is $\forall A,\,B,\,C \quad (A-B)\cap (A-C)=A-(B\cap C)$ true ? Justify your answer.

No take
$$A = \{1, 2\}$$
 $B = \{1, 2\}$ $C = \{2\}$
 $(A - B) \cap (A - C) = \{2\} \cap \{1\} = \emptyset$
 $A - \{B \cap C\} = \{1, 2\}$

Problem 2 (10 points) Prove that $\forall x \in Z \ 14 \ \text{div} \ x \Leftrightarrow (2 \ \text{div} \ x \wedge 7 \ \text{div} \ x)$

=7 Assume 14 diux, then x=14 k=2.7 k for some KEZ 20 2 diux end 7 diux

C= Assume 2 divx end 7 divx, then x=2h=7kfor some $h, k \in \mathbb{Z}$. Since 2h is even 7k must be even, so k must be even, that is k=2l for some $l \in \mathbb{Z}$ so x=7.2l=16l end 16l divx **Problem 3**(10 points) Guess a formula for $1+3+5+\cdots(2n+1)$, the sum of the first n odd positive integers and use induction to prove your formula is correct

$$|x| = 4$$

$$|x|$$

Problem 4 Define a function $f: Z \to Z$ by:

$$f(x) = \begin{cases} x - 3 & \text{if } x \ge 0\\ x + 5 & \text{if } x < 0 \end{cases}$$

1. (5 points) Is f injective? Prove your answer.

$$N_0$$
 $f(0) = -3$
 $g(-8) = -3$

2. (5 points) Is f surjective? Prove your answer.

Yes We need to prove
$$\forall y \in Z \exists x \in Z \quad f(x) = y$$

if $y \ge -3$ toke $x = y+3$ then $x \ge 0$ end $f(x) = x-3 = y+3 = 3 = y$
if $y < -3$ toke $x = y-5$ then $x < 0$ end $f(x) = x+5 = y = 7 + 7 = y$

Problem 5(10 points) Let A be the set of all functions from Z to Z. For each statement below , write the negation of the statement and prove whether the original statement (NOT the negation) is true or false.

(a)
$$\forall f \in A \exists g \in A \ \forall x \in Z \ g(x) \ge f(x)$$
.
NEGATION: $\exists f \in A \ \forall g \in A \ \exists x \in G \ g(x) < f(x)$

True or false ? Give a proof. $\,$

True Given
$$f = 2-02$$
 teke $g = 2-02$
 $g(x) = f(x)$ Hen $f(x) = f(x)$

(b)
$$\exists f \in A \, \forall g \in A \, \forall x \in Z \, g(x) \geq f(x)$$
.
NEGATION: $\forall f \in A \, \exists f \in A \, \exists x \in F \, f(x) \subset f(x)$

True or false? Give a proof.

Felse. The negation is true.
Given
$$f \geq -0 \geq 1$$
 Take $g \geq -0 \geq 1$ defined by $g(x) = f(x) - 1$ take $x = 0$ then $g(0) = f(0) - 1$ so $g(0) \leq f(0)$ (c) $\exists f \in A \forall y \in Z \exists x \not y \text{ odd} \Rightarrow (x \text{ even } \land f(x) = y)$.)
NEGATION: $\forall f \in A \Rightarrow g \in Z \Rightarrow f(x) \Rightarrow g(x) \Rightarrow g(x)$

True Teke
$$\{2-02\}$$

 $\{5(x)=x+1\}$
Then if y is add $x=y-1$ is even end $\{4(x)=y\}$