Math 300 Fall 2016 Midterm Exam

 $Write\ clearly\ and\ legibly.\ Justify\ all\ your\ answers.$ $You\ will\ be\ graded\ for\ correctness\ and\ clarity\ of\ your\ solutions.$ You may use one 8.5 x 11 sheet of notes; writing is allowed on both sides. You may use a calculator.

You can use elementary algebra and any result that is proved in chapters 1-9 of the textbook (but not in the exercises). You need to prove everything else. Please raise your hand and ask a question if anything is not clear.

This exam contains 5 pages and is worth a total of 40 points.

You have 50 minutes. Good luck

NAME:
PROBLEM 1
PROBLEM 2
PROBLEM 3
PROBLEM 4
Total

1

• Problem 1 (10 points) Prove that $\sum_{i=1}^{2n} \frac{(-1)^{i+1}}{i} = \sum_{i=n+1}^{2n} \frac{1}{i}$, for all $n \in \mathbb{Z}^+$.

By induction

Base case: if
$$n=1$$
 $\frac{2}{2}\frac{(-1)^{(+)}}{2}=1-\frac{1}{2}=\frac{1}{2}$ and $\frac{2}{2}\frac{1}{2}=\frac{1}{2}$

so identity is true for $n=1$

Induction step; assume
$$\frac{2k}{2-1}\frac{1}{L}$$
 then
$$\frac{2(k+1)}{2-1}\frac{2k}{L} = \frac{2k}{2-1}\frac{1}{L} + \frac{1}{2k+1} - \frac{1}{2k+2} = \frac{2k}{2-1}\frac{1}{L} + \frac{1}{2k+1} - \frac{1}{2k+2} = \frac{2k}{2-1}\frac{1}{L} + \frac{2}{2-1}\frac{1}{2-1}\frac{1}{2-1} + \frac{2}{2-1}\frac{1}{2-1}\frac{1}{2-1} = \frac{2k+1}{2-1}\frac{1}{$$

• **Problem 2** Define a function $f: Z^+ \to Z^+$ by:

$$f(n) = \begin{cases} n+1 & \text{if } n \text{ is odd} \\ 2n-1 & \text{if } n \text{ is even} \end{cases}$$

a)(5 points) Is f injective? (Give a proof).

Yes if $n_1, n_2 \in \mathbb{Z}^+$ and $n_1 \neq n_2$ and n_1 and n_2 both odd then certainly $n_1 + 1 \neq n_2 + 1$ so $d_1(n_1) \neq d_1(n_2)$ n_1 and n_2 both even then certainly $2n_1 - 1 \neq 2n_2 - 1$ so $d_1(n_1) \neq d_1(n_2)$ n_1 add and n_2 even (or vice verse) then $d_1(n_1)$ is even and $d_1(n_2)$ is odd (or vice verse) so $d_1(n_1) \neq d_1(n_2)$

b) (5 points) Is f surjective ? (Give a proof).

No look at
$$y=1$$
 then I is odd so if $1=d(n)$
then n is even and $1=2n-1$, but the only solution
is $n=1$ and $f(1)=2$
so there is no $n \in 2^+$ st $f(n)=1$

- Problem 3 Let A and B be sets.
 - 1. (5 points) Prove that $(A B) \cup (B A) \subseteq A \cup B$
 - 2. (5 points) Is it true or false that $(A-B) \cup (B-A) = A \cup B$? Prove your answer.
- 1) Assume $x \in (A-B) \cup (B-A)$, then $x \in A-B \ge 0$ $x \in A$, therefore $x \in A \cup B$, or $x \in B-A$ so $x \in B$ and therefore $x \in A \cup B$ In any case if $x \in (A-B) \cup (B-A)$ then $x \in A \cup B$
- 2) (A-B)U(B-A) A U.B

No if for example $A = \frac{1}{2}, \frac{2}{3}$ $B = \frac{1}{2}, \frac{3}{3}$ $A - B = \frac{1}{2}, \frac{3}{3}$ $B - A = \frac{1}{3}$ $A - B = \frac{1}{2}, \frac{3}{3}$ but $A \cup B = \frac{1}{2}, \frac{2}{3}$

- **Problem 4**(10 points) For each of the following statements circle whether the statement is true or false and give a proof.
 - 1. $\forall x \in Z$, $\exists y \in P(Z)$, $x \in y$.

TRUE FALSE

Given $x \in Z$ take y = dxy then $y \in P(Z)$ and $x \in Y$

 $2. \ \forall x \in Z \quad \exists y \in Z \quad \forall w \in Z \quad xy \textcircled{9} \geq x \nearrow$

TRUE (FALSE)

We stell proce $\exists x \in \mathcal{E} \forall y \in \mathcal{E} \exists w \in \mathcal{E} \forall x \in$