Problem 1 (10 points) Assume P, Q and R are statements. Is $\neg P \lor \neg Q \lor R$ equivalent to $P \Rightarrow (Q \Rightarrow R)$? Justify your answer.

 $\mathbf{2}$

Problem 2(10 points) Given the following recursive definition: $a_1 = 1$ $a_{n+1} = 3a_n - 1$ for $n \ge 1$ Prove that $a_n = \frac{3^{n-1}+1}{2}$

By induction on n
Base case: if
$$n=1$$
 $\alpha_1 = \frac{3^{l-1} + l}{2}$
Induction step: assume $\alpha_n = \frac{3^{h-1} + l}{2}$ then
 $\alpha_{n+1} = 3\alpha_n - l = 3 \cdot \frac{3^{n-1} + l}{2} - l = \frac{3^n + 3 - 2}{2} = \frac{3^{(n+1)-l}}{2}$

Problem 3 (10 points) Assume A is a denumerable set .

Let $B = \{x \in Z^+ | x \ge 10\}$ Prove $A \cup B$ is denumerable. You may assume A and B are disjoint. You may also assume Z, $Even_{Z^+}$, $Even_Z$, Odd_{Z^+} , Odd_Z , $Z \times Z$, $Z^+ \times Z^+$ are denumerable, but you cannot assume the result from the hw that the union of two denumerable sets is denumerable without reproving it.

Let $\int z^{+} - \circ A$ be a bijection. Such a bijection exists because A is denumerable. Let $g = -\circ A \cup B$ $g(z) = \begin{cases} f(z) & f(z) & z > i \\ -z + i \circ f(z < \circ) \end{cases}$ Let $h A \cup B - \circ Z$ $h(y) = \int 5^{-1}(y) & if y \in A$ since $A \cap B = \emptyset$ h is well $h(y) = \int 10^{-y} & if y \in B$ defined $h(g(z)) = \begin{cases} h(f(z)) & f(z) = z & if z > i \\ -z + i \circ) & = 10 - (-2 + i \circ) = z & if z < 0 \end{cases}$ $g(h(y)) = \int g(f^{-1}(y)) = f(f(y)) = y & if y \in A$ $(g(i \circ - y)) = -i \circ + y + i \circ = y & if y \in B$ In any case h(g(z)) = z for all $z \in Z$ and g(h(y)) = y for all $y \in A \cup B$ so $h = g^{-1}$ and g is a bijection from a denumerable set fo A \cup B, so A \cup B is denumerable

Problem 4 (10 points) Prove that no integer of the form 4n+3 is the sum of two squares (that is the sum of the squares of two integers).

We need to prove the diophentine equation

$$4n+3 = x^{2}+y^{2}$$
 has no solutions.
By contradiction assume $4n_{0}+3 \equiv X_{0}^{2}+y_{0}^{2}$
for some $n_{0}, x_{0}, y_{0} \in \mathbb{Z}$ then $4n_{0}+3 \equiv x_{0}^{2}+y_{0}^{2}$
mod 4 or $3 \equiv x_{0}^{2}+y_{0}^{2}$ mod 4
but in $\frac{2}{4}$ $0^{2}=0$
 $1^{2}=1$
 $2^{2}=0$
 $3^{2}=1$
so $x_{0}^{2}+y^{2}$ mod 4 can only be 0, 1 or 2, never 3

Problem 5 (10 points) Prove that for any sets A,B and C $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

First we shall prove $A^{T} \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$: ocssume $X \in A \times (B \cap C)$ then X = (Q, d), with $Q \in A$ deBnc so $d \in B$ and $X \in A \times B$ and $d \in C$ so $X \in A \times C$, therefore $X \in (A \times B) \cap (A \times C)$

Then we shell prove $(A \times B) \cap (A \times c) \subseteq A \times (B \cap c)$: assume $y \in (A \times B) \cap (A \times c)$: then $y \in A \times B$ so y = (a, d) with $a \in A$, $d \in B$; $y \in A \times c$ also be the must have $d \in c$, therefore $d \in B \cap c$ to $y \in A \times (B \cap c)$

Problem 6

(5 points) Find all integers x that satisfy $12x \equiv 24 \mod 30$.

$$2x \equiv 4 \mod 5$$

 $x \equiv 2 \mod 5$
 $x = 2 + 5 \ltimes \ker \epsilon^2$

(5 points) Compute $2^{55} \mod 53$. (Note : 53 is prime)

$$2^{15} = 2^{53} \cdot 2^2 \equiv 2 \cdot 4 \equiv 8 \mod 53$$

(5 points) List all invertible elements of Z_{18} .

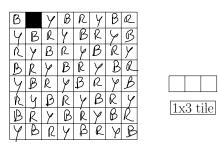
Problem 7(10 points) Given $f : A \to A$ and $g : A \to A$.

1. Prove that if f and g are both injective, then $g \circ f$ is injective

Assume $g(f(x_1)) = g(f(x_2))$ then $f(x_1) = f(x_2)$ because g is injective and therefore $x_1 = x_2$ because f is injective

2. (5 points) Is it true that if $g \circ f$ is injective then f and g are both injective? Prove your answer.

No Gnorder $f = \frac{z^{2} - \sigma z^{2}}{f(x) = x + 1}$ g $(z) = \frac{z^{2} + \sigma z^{2}}{g(x) = \frac{z^{2} + \sigma z^{2}}{2x + \frac{1}{g(x)} > 1}$ g (z(x)) = g(x+1) = x + 1 so it is injective g (z(x)) = g(x+1) = x + 1 so it is injective **Problem 8** Prove that an 8x8 checkerboard with the square in position 1, 2 i.e top row , second from the left removed cannot be covered by 1x3 tiles. A covering must be such that each square of a 1x3 tiles covers exactly one square of the board.



checkerboard with square (1,2) removed

Assume by contradiction that it is possible to cover the board. Color the board with 3 culors B, R, Y as above. A 1×3 tile placed anywhere on the board will cover exactly one i3, where R of BRY squares must be the sume but flere are 22 B 20 R 21 y 5 yhares on the board