Problem 1 (12 points) Prove that if a, b and c are integers and $a^2 + b^2 = c^2$ then a is even or b is even.

By contradiction; assume $a, b, c \in \mathbb{Z}$ and $a^2 + b^2 = c^2$ and a is odd and b is odd. Then $a = 2k + 1$ for some $k \in \mathbb{Z}$ and $b = 2h + 1$ for some $h \in \mathbb{Z}$.

$$e^2 + b^2 = (2k + 1)^2 + (2h + 1)^2 = 4(k^2 + h^2 + h + k) + 2$$

so $2 \div e^2 + b^2$ but 4 does not divide c^2. Since $2 \div c^2$ then $2 \div c$ so $c = 2l$ for some $l \in \mathbb{Z}$ and $c^2 = 4l^2$ so we have the contradiction that 4 both divides c^2 and does not divide c^2.
Alternative proof

Assume \(a^2 + b^2 = c^2 \) then

\[a^2 + b^2 \equiv c^2 \pmod{4}, \text{ in } \mathbb{Z}_4 \]

\[0^2 = 0, \quad 1^2 = 1, \quad 2^2 = 0, \quad 3^2 = 1 \]

Therefore \(c^2 \equiv 0 \) or \(c^2 \equiv 1 \pmod{4} \)

An odd number is either congruous to 1 or 3 \(\pmod{4} \) so if both \(a \) and \(b \) were odd we would have \(a^2 + b^2 \equiv 1 + 1 \equiv 2 \pmod{4} \) not 0 or 1, so \(a \) and \(b \) cannot both be odd.
Problem 2 (12 points) Find all integer solutions of \(350x \equiv 210 \mod 140\)

\[
gcd(350, 140) = 70
\]

70 div 210 so we have solutions

we can cancel to end consider

the congruence \(5x \equiv 3 \mod 2\)

which is equivalent to \(x \equiv 1 \mod 2\)

so all solutions are

\[x = 1 + 2k \quad k \in \mathbb{Z}\]

the odd numbers.
Problem (12 points) Given the set \(A = \{ x \in \mathbb{Z} \mid 4 \text{ div } x \} \) prove that \(A \) is denumerable.

We know \(\mathbb{Z} \) is denumerable therefore there is a bijection \(f : \mathbb{N} \to \mathbb{Z} \). If we can find a bijection \(g : \mathbb{Z} \to A \) then \(g \circ f : \mathbb{N} \to A \) is a bijection from \(\mathbb{N} \) to \(A \).

Let \(g : \mathbb{Z} \to A \) be defined by \(g(z) = 4z \).

Then \(g \) is injective because \(z_1 \neq z_2 \Rightarrow g(z_1) \neq g(z_2) \).

\(g \) is surjective because given \(y \in A \) there is \(k \in \mathbb{Z} \) s.t. \(y = 4k \) by definition of \(A \), and therefore \(y = f(k) \).

So \(g \) is a bijection.
Problem 6 (12 points) Compute $542 \cdot 11^{2000} + 1023 \cdot 777 \mod 3$.

$542 \equiv 2 \mod 3$

$11^{2000} = (11^2)^{1000} \equiv 1 \mod 3$ (by Fermat's Little Theorem)

$1023 \equiv 0 \mod 3$

Therefore $542 \cdot 11^{2000} + 1023 \cdot 777 \equiv \boxed{2} \mod 3$
Problem 5 (16 points) Given the function $f : \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{12}$ defined by $f(x) = 3x$ (so for example $f(5) = 3$)

1. Is f injective? Prove your answer.

No \hspace{1cm} f(0) = f(4)

2. Is f surjective? Prove your answer.

No the linear congruence $3x \equiv 1 \text{ mod } 12$ has no solutions since $\gcd(3, 12) = 3$ and 3 does not divide 1 so there is no x in \mathbb{Z}_{12} so $f(x) = 3x \equiv 1$.
Problem 6 (14 points) Prove that for all sets A, B, C and D

$(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$

Suppose $s \in (A \times B) \cup (C \times D)$

then $s \in A \times B$ or $s \in C \times D$

If $s \in A \times B$ then s is a pair (x, y) with $x \in A$ and $y \in B$.

If $s \in C \times D$ then s is a pair (x, y) with $x \in C$ and $y \in D$. In either case s is a pair (x, y) with $x \in A \cup C$ and $y \in B \cup D$. Therefore $s \in (A \cup C) \times (B \cup D)$
Problem (14 points) Given the following recursive definition

\[f(1) = 3 \]
\[f(2) = 3 \]
\[f(n + 1) = f(n) \cdot f(n - 1) \]

- Prove that \(f(n) \) is odd for all \(n \in \mathbb{N} \)
- Prove that \(f(n) = 3^n \) where \(u_n \) is the \(n \)th Fibonacci number.

\[P(n) : \forall f(n) = 3^u_n \text{ and } f(n) \text{ is odd} \]

Base case: \(n = 1 \)
\[u_1 = 1 \Rightarrow f(1) = 3^1 = 3 \]
\[f(1) \text{ is odd} \]

Base case: \(n = 2 \)
\[u_2 = 1 \Rightarrow f(2) = 3^1 = 3 \]
\[f(2) \text{ is odd} \]

Induction step: Assume \(P(k-1) \) and \(P(k) \) for \(k \geq 2 \), then
\[f(k+1) = f(k) \cdot f(k-1) \]

By assumption, the product of 2 odd numbers is odd.
\[f(k+1) = 3^u_k \cdot 3^u_{k-1} = 3^{u_k + u_{k-1}} \]
\[f(k+1) = 3^{u_{k+1}} \] by definition of Fibonacci's numbers