Problem 1 (10 points) Circle all the statements below that are equivalent to the negation of the statement "there is an integer x such that either x is prime or x satisfies property 1 and property 2". No justification needed.

1. There is an integer x such that x is not prime and either x does not satisfy property 1 or x does not satisfy property 2.
2. For all integers x, x is not prime and it does not satisfy property 1 and property 2.
3. For all integers x, if x satisfies property 1 and 2 then x is prime.
4. There is an integer x, x is prime and x satisfies property 1 or property 2.
5. For all integers x, either x is not prime or x does not satisfy property 1 or x does not satisfy property 2.
6. For all integers x, x is not prime and either x does not satisfy property 1 or x does not satisfy property 2.
7. For all integers x, if x is prime, then x does not satisfy property 1 and x does not satisfy property 2.

The original statement is

$$\exists x \in \mathbb{Z} \text{ prime}(x) \lor (\text{P1}(x) \land \text{P2}(x))$$

The negation is:

$$\forall x \in \mathbb{Z} \neg \text{prime}(x) \lor (\neg \text{P1}(x) \lor \neg \text{P2}(x))$$

equivalent to

$$\forall x \in \mathbb{Z} \neg \text{prime}(x) \lor (\neg \text{P1}(x) \lor \neg \text{P2}(x)) \lor \text{P1}(x) \lor \text{P2}(x)$$

This is equivalent to 6 and to no other statement in the list above.
Problem 2 Define a function \(f : \mathbb{Z} \to \mathbb{Z} \) by:

\[
f(x) = \begin{cases}
 x + 3 & \text{if } x \text{ is even} \\
 x + 1 & \text{if } x \text{ is odd}
\end{cases}
\]

Note \(x + 3 \) is odd, not \(x + 1 \) is even.

a) (5 points) Is \(f \) injective? (Give a proof).

Yes. We need to prove: \(\forall x_1, x_2 \in \mathbb{Z}, \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2) \).

Assume \(x_1 \neq x_2 \) in \(\mathbb{Z} \) and consider 3 cases:

1) \(x_1, x_2 \) even: clearly \(x_1 + 3 \neq x_2 + 3 \).
2) \(x_1, x_2 \) odd: clearly \(x_1 + 1 \neq x_2 + 1 \).
3) One of \(x_1, x_2 \) even and the other odd: then one of \(f(x_1) \) \(f(x_2) \) is odd and the other even so \(f(x_1) \neq f(x_2) \).

b) (5 points) Is \(f \) surjective? (Give a proof).

Yes. We need to prove \(\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z} \) \(f(x) = y \).

If \(y \) is odd solve \(y = x + 3 \) and take \(x = y - 3 \);

If \(y \) is even solve \(y = x + 1 \) and take \(x = y - 1 \);

If \(y \) is odd solve \(y = x + 3 \) and take \(x = y - 3 \);

If \(y \) is even solve \(y = x + 1 \) and take \(x = y - 1 \).
c)(10 points) Given x in \mathbb{Z}, prove that $f^{2n}(x) = x + 4n$ for all $n \in \mathbb{N}$, where f^{2n} means f composed with itself $2n$ times, in other words

\[f^{2n} = \underbrace{f \circ f \circ \cdots \circ f}_{2n \text{ times}} \]

By induction on n:

1) **Base case, $n = 1$**: If x is even then $f^2(x) =$

\[= f(f(x)) = f(x+3) = x+3+1 \quad (\text{since } x+3 \text{ is odd}) \]

\[= x+4. \quad \text{If } x \text{ is odd then } f^2(x) = f(f(x)) \]

\[= f(x+1) = x+1+3 \quad (\text{since } x+1 \text{ is even}) = x+4 \]

so $\forall x \in \mathbb{Z}$, $f^2(x) = x+4$

2) **Induction step**: Assume $f^{2k}(x) = x + 4k$

Then $f^{2(k+1)}(x) = f^{2k+2}(x) = f^{2k} \circ f^{2k}(x) =$

\[= f^2(x+4k) \quad (\text{by induction assumption}) \]

\[= x + 4(k+1) \quad (\text{by 1}) \quad = x + 4(k+1) \]
Problem 3 (10 points) Prove that, for all integers x,
10 divides x if and only if 2 divides x and 5 divides x. (You can assume that the product of two odd numbers is odd without having to prove this).

$$10 \div x \Rightarrow 2 \div x \land 5 \div x \quad \text{Assume } 10 \div x.$$

Then $x = 10k$ for some $k \in \mathbb{Z}$, so $x = 2(5k)$ and $5k \in \mathbb{Z}$, therefore $2 \div x$ and $x = 5(2k)$ and $2k \in \mathbb{Z}$ so $5 \div x$.

$$2 \div x \land 5 \div x \Rightarrow 10 \div x.$$ Assume $2 \div x \land 5 \div x$, then $x = 2m$ for some $m \in \mathbb{Z}$ and $x = 5n$ for some $n \in \mathbb{Z}$. Since x is even, $5n$ must be even and therefore n must be even; since 5 is odd and the product of two odd integers is odd, therefore $n = 2k$ for some $k \in \mathbb{Z}$ and substituting in $(**)$ we get $x = 5(2k) = 10k$, therefore $10 \div x$.

5
Problem 4 (10 points) Let A, B and C be non empty sets. Prove that
$(A \subseteq B) \land (A \cap C = \emptyset) \Rightarrow P(A) \subseteq P(B - C)$

Assume $A \subseteq B$ and $A \cap C = \emptyset$. We need to show that
$\forall S \in P(A) \Rightarrow S \in P(B - C)$.

Assume $S \in P(A)$, this means $S \subseteq A$ by the definition of power set; now if $x \in S$ then $x \in A$ and $x \in B$, since $A \subseteq B$ and $x \notin C$ since $A \cap C = \emptyset$, so $x \in B - C$; therefore $S \subseteq B - C$ and this means $S \in P(B - C)$.