Hw 3

Read chapter 5 (again)

Main skills. You need to know how to :

- do a proof by (regular, strong or modified) induction.
- you need to understand the notion of definition by recursion.

Do the following problems from your textbook: p.54:12 p.56:20 Do the following additional problems.

1. Consider the following table

$$3^{0} = 1(\text{ note } 3^{1} = 3)$$

$$3^{0} + 3^{1} = 4(\text{ note } 3^{2} = 9)$$

$$3^{0} + 3^{1} + 3^{2} = 13 (\text{ note } 3^{3} = 27)$$

$$3^{0} + 3^{1} + 3^{2} + 3^{3} = 40 (\text{ note } : 3^{4} = 81)$$

Guess a formula for the sum $3^0 + 3^1 + 3^2 \cdots + 3^n$ (that is guess something like $\sum_{i=0}^n 3^i =$ expression in n) and prove your guess by induction.

2. Prove that if r is a real number with
$$|r| < 1$$
 then $\sum_{i=0}^{n-1} r^i = \frac{1-r^n}{1-r}$

- 3. Prove that every positive integer n can be expressed as the product of an odd number and a power of 2, that is, for every $n \ge 1$ there are h in Z^+ , h odd and k in Z, $k \ge 0$ such that $n = h \cdot 2^k$. HINT: use strong induction.
- 4. Given the recursive definition:

 $\begin{aligned} a_1 &= 1 \\ a_2 &= 9 \\ a_{n+1} &= 6a_n - 9a_{n-1} \text{ for } n+1 \geq 3 \\ \text{Prove that } \forall n \geq 1 \quad a_n &= (2(n-1)+1)3^{n-1}. \end{aligned}$

- 5. Prove that for all $n \ge 1$ $\sum_{i=0}^{n-1} u_{2i+1} = u_{2n}$ where u_n is the n-th Fibonacci number.
- 6. Prove that there are u_{n+1} (the n+1 Fibonacci number) different ways to tile a 1xn board using squares (i.e. 1x1 tiles) and dominoes (i.e. 1x2 tiles).

7. The statement $\forall n \geq 0$, 11n = 0 is false, therefore any proof of it must be wrong. What is wrong with the following proof ?

Proof by strong induction:

Base case : if n = 0 then 11 n = 0

Induction step : assume 11t = 0 for $t = 0, 1, \ldots k$, we need to prove 11(k+1) = 0. Choose $i, 0 \le i \le k$ and let j = (k+1) - i then k+1 = i+j and 11(k+1) = 11i + 11j = 0 by induction assumption.

8. Consider the following sequence $a_{n\,m}$ where

 $a_{n\,1} = 1$ for all $n \in N$

 $a_{1\,m} = 0$ for all $m \ge 2$

 $a_{n+1\,m+1} = a_{n\,m} + a_{n\,m+1}$ for all $n, m \in N$

Use induction to prove that $\forall n \in N(x+y)^n = \sum_{i=0}^n a_{n+1\,i+1}\,x^{n-i}y^i$