Lesson3

Read 5.2

General Riemann sum, midpoint rule

The definite integral

Consider a function f over an interval $[a, b]$.

- n number of subdivisions.
- $\Delta x=\frac{b-a}{n}$.
- $x_{0}=a, x_{i}=a+i \Delta x$ for $i=1$ to n. (note $x_{n}=b$).
- x_{i}^{*} any point in $\left[x_{i-1}, x_{i}\right.$]

General Riemann sum:

$$
\begin{gathered}
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x= \\
=f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+\cdots+f\left(x_{n}^{*}\right) \Delta x
\end{gathered}
$$

An approximation of $\int_{1}^{2} f(x) \mathrm{d} x$ with randomly selected points, where $f(x)=\frac{1}{x}$ and the partition is uniform. The approximate value of the integral is 0.7143039474 . Number of subintervals used: 4.

What happens when n gets bigger and bigger ?

Def

The definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

provided the limit exists and gives the same value for all possible choices of the x_{i}^{*}. In this case we say f is integrable on $[a, b]$

Theorem
If f is continuous on $[a, b]$ or f is bounded and f has only a finite number of discontinuities then it is integrable

In this class we will learn

- To calculate definite integrals.
- To approximate definite integrals.
- To use definite integrals in applications.

Midpoint rule

Consider a function f over an interval $[a, b]$.

- n number of subdivisions.
- $\Delta x=\frac{b-a}{n}$.
- $x_{0}=a, x_{i}=a+i \Delta x$ for $i=1$ to n. (note $x_{n}=b$).
- $m_{i}=\frac{x_{i}+x_{i-1}}{2}$ or $m_{1}=a+\frac{\Delta x}{2}, m_{i}=m_{i+1}+\Delta x$ for $i>1$

$$
\begin{gathered}
M_{n}=\sum_{i=1}^{n} f\left(m_{i}\right) \Delta x= \\
=f\left(m_{1}\right) \Delta x+f\left(m_{2}\right) \Delta x+\cdots+f\left(m_{n}\right) \Delta x
\end{gathered}
$$

Example

Approximate the area under the parabola $y=x^{2}+1$ in the interval $[0,1]$ using the midpoint rule with 4 subdivision.

Example

If you use the midpoint rule with 4 subdivisions on $f(x)=x^{2}-5$ in the interval $[0,3]$ which value do you get and what does this value approximate?

Properties of the definite integral

- $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
- $\int_{a}^{a} f(x) d x=0$
- $\int_{a}^{b} c d x=c(b-a)$
- $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
- $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
- $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
- If $f(x) \geq 0$ on $a \leq x \leq b$ then $\int_{a}^{b} f(x) d x \geq 0$
- If $f(x) \geq g(x)$ on $a \leq x \leq b$ then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$
- If $m \leq f(x) \leq M$ on $a \leq x \leq b$ then
$m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$

Estimate the distance traveled by a car in the time interval [0, 2] , given that the car 's velocity at time t is $v(t)=2 \sqrt{t}$

Express the limit as a definite integral on $[1,5]$:
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\left(i \frac{4}{n}\right)\right)^{2} \frac{4}{n}$

