Lesson2

Read 5.1

Area under the graph of a function

Right hand sum, left hand sum

Area problem

Consider a function f over an interval $[a, b]$. - n number of subdivisions.

- $\Delta x=\frac{b-a}{n}$.
- $x_{0}=a, x_{i}=a+i \Delta x$ for $i=1$ to n.
(note $x_{n}=b$).

Lefthand sum

$$
\begin{gathered}
L_{n}=\sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x= \\
=f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\cdots+f\left(x_{n-1}\right) \Delta x
\end{gathered}
$$

Partitions: 4
$-f(x)$

Right hand sum

$$
\begin{gathered}
R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x= \\
=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x
\end{gathered}
$$

Partitions: 4

Example

Estimate the area under the graph of $f(x)=\frac{1}{x}$ from 1 to 2 , using L_{4} and R_{4}

Question: what happens when the number n of subdivision becomes bigger and bigger ?

What happens if the graph of f gets below the x-axis?

Problem

The velocity of a moving object is given by the following table. Give both an overestimate and an underestimate for the distance traveled by the object by the object in the time interval $t=2$ to $t=5$. Time is measured in hours, velocity in km / h.

t	0	1	2	3	4	5	6	7
V	40	45	50	45	30	20	18	10

