Lesson1

Read 4.9

Antiderivative of a function

Rectilinear motion, free fall

- web page: https://sites.math.washington.edu/ ~ep2/classes/125/125.html
- email : ep2@uw.edu
- Exam dates
- WebAssign

Things to review

- Elementary functions: $x^{n}, \frac{1}{x}, \sqrt{x}, e^{x} \ln x$, trig functions.
- Derivatives: formulas, rules, interpretation.

Function F Derivative F^{\prime}

\square

$$
n x^{n-1}
$$

$$
e^{x}
$$

$$
\frac{1}{x}
$$

$\cos x$
$-\sin x$
$\sec ^{2} x$

Function $F \quad$ Derivative F^{\prime}

$$
\begin{array}{cc}
\arctan x & \frac{1}{1+x^{2}} \\
\arcsin x & \frac{1}{\sqrt{1-x^{2}}} \\
\arccos x & \frac{-1}{\sqrt{1-x^{2}}} \\
\operatorname{cotan} x & -\operatorname{cosec}^{2} x \\
\sec x & \sec x \tan x
\end{array}
$$

In this class we study antiderivatives.
Given a function f (we think of $f=F^{\prime}$) we want to find another function F such that $F^{\prime}=f$

Def: A function F defined on an interval $/$ is called an antiderivative of another function f defined on I if and only if $F^{\prime}(x)=f(x)$ for all x in I.

Example

Find an andiderivative for $f(x)=2 x$

Function $f=F^{\prime}$ Particular antiderivative F

$$
\begin{array}{cc}
x^{n} & \frac{x^{n+1}}{n+1} \\
\frac{1}{x} & \ln |x| \\
e^{x} & e^{x} \\
\sin x & -\cos x \\
\cos x & \sin x \\
\frac{1}{1+x^{2}} & \arctan (x)
\end{array}
$$

Function $f=F^{\prime} \quad$ Particular antiderivative F

$$
\begin{array}{cc}
\sec ^{2}(x) & \tan (x) \\
\operatorname{cosec}^{2}(x) & -\operatorname{cotan}(x) \\
\sec (x) \tan (x) & \sec (x) \\
\frac{1}{\sqrt{1-x^{2}}} & \arcsin (x) \\
\frac{-1}{\sqrt{1-x^{2}}} & \arccos (x)
\end{array}
$$

Does every function have an antiderivative?

If a function f has an antiderivative F, is it unique?

Differentiation rules

$$
\begin{aligned}
(c F)^{\prime} & =c F^{\prime} \\
(F+G)^{\prime} & =F^{\prime}+G^{\prime}
\end{aligned}
$$

Antidifferentiation rules

Assume $F^{\prime}=f$ and $G^{\prime}=g$

An antiderivative of $c f$ is $c F$

An antiderivative of $(f+g)$ is $F+G$.

Find an antiderivative for

$$
f(x)=3 \sqrt{x}+\frac{\cos x}{2}+\frac{1}{x^{2}}
$$

then find ALL antiderivatives.

Challenge question

Find an antiderivative for $f(x)=|x-1|$, then find ALL antiderivatives.

Application to rectilinear motion

- $s(t)$ position of a certain object, with respect to a given origin, at time t
- $v(t)=s^{\prime}(t)$ velocity of the object at time t.
- $a(t)=v^{\prime}(t)$ acceleration of the object at time t.

Free fall

Given that an object in free fall has a constant acceleration $g=-9.8 \mathrm{~m} / \mathrm{sec}^{2}\left(=-32 \mathrm{feet} / \mathrm{sec}^{2}\right)$ find a general formula for the position of the object at time t.

A ball is dropped from a location 100 m above the ground. Find the distance of the ball above the ground level at time t.

How long does it take the ball to reach the ground?

With what velocity does it strike the ground?

A motorist is driving along a straight road with $v(t)=30\left(t-t^{2}\right) \mathrm{km} / \mathrm{h}$. After 1 hr it reaches town A. Find the distance of the motorist from town A after 2 hr .

