Math 125 Section D (Pezzoli)
Fall 2017
Midterm \#1 (60 points)

Name
\qquad

Section

- Your exam contains 4 problems. The entire exam is worth 60 points.
- This exam is closed book. You may use one $8 \frac{1}{2} " \times 11$ " sheet of notes (both sides). Do not share notes.
- The only calculator allowed is the TI 30x IIS.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct. Show your work in evaluating integrals, even if they are on your note sheet.
- Place a box around your answer to each question.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Raise your hand if you have a question.
- Give your answer in exact form means write $\sin (2)-\pi$ instead of -2.23 . If you are asked to give a decimal approximation, use two decimal digits in your final answer.
- This exam has 5 pages,including this cover sheet. Please make sure that your exam is complete.

Problem \#1(20 pts) \qquad

Problem \#2(10 pts)

Problem \#3(15 pts)

Problem \#4(15 pts) \qquad

TOTAL (60 pts)

1. Calculate the following integrals. Give your answers in exact form.
(a) $\int_{0}^{1} x \cdot e^{x^{2}} \cdot \sin \left(e^{x^{2}}\right) d x$

$$
\begin{aligned}
& u=e^{x^{2}} \\
& d u=2 x e^{x^{2}} d x \\
& e^{1} \\
& \int_{e^{1}}^{1} \frac{1}{2} \sin u d u=\left.\frac{1}{2}(-\cos u)\right|_{1} ^{e}=\frac{1}{2}(\cos 1-\cos e)
\end{aligned}
$$

(b) $\int x^{3} \sqrt{x^{2}-2} d x$

$$
\begin{aligned}
& u=x^{2}-2, x^{2}=u+2 \\
& d u=2 x d x \\
& \int \frac{1}{2}(u+2) \sqrt{u} d u
\end{aligned}
$$

$$
\int_{2}^{1}(u+2) \sqrt{u} d u=\int_{\frac{1}{2}} u^{3 / 2}+u^{1 / 2}=\frac{1}{5} u^{\frac{5}{2}}+\frac{2}{3} u^{\frac{3}{2}}+c
$$

$$
\frac{1}{5}\left(x^{2}-2\right)^{3 / 2}+\frac{2}{3}\left(x^{2}-2\right)^{3 / 2}+C
$$

(problem 1 continued)
(c) $\int_{\frac{\pi}{12}}^{\frac{\pi}{6}} \frac{1}{\tan (2 \theta)} d \theta=\int_{\frac{\pi}{12}}^{\frac{\pi}{6}} \frac{1}{\frac{\sin (2 \theta)}{\cos (2 \theta)}}=\int_{\frac{\pi}{12}}^{\cos (2 \theta)} \frac{\cos (2 \theta)}{\sin } d \theta$

$$
\begin{aligned}
& U=\operatorname{sn}(2 \theta) \\
& d u=2 \cos (2 \theta) d \theta \\
& \int_{\sin \left(\frac{\pi}{6}\right)}^{\sin \left(\frac{\pi}{3}\right)} \frac{1}{2} \frac{d u}{U}=\frac{1}{2} \ln |u|_{1 / 2}^{\frac{\sqrt{3}}{2}}=\frac{\frac{1}{2}\left(\ln \frac{\sqrt{3}}{2}-\ln \frac{1}{2}\right)}{\frac{\ln 3}{8}+\frac{\ln 2}{2}}
\end{aligned}
$$

2. Given $f(x)=\int_{\cos (x)}^{\sin (x)} e^{t^{2}} d t$, calculate $f^{\prime}(0)$. Is f increasing or decreasing at $x=0$?
$\int_{\cos (x)}^{c} e^{t^{2}} d t+\int_{c}^{\sin x} e^{t^{2}} d t=-\int_{c}^{\cos (x)} e^{t^{2}} d t+\int_{c}^{\sin } e^{t^{2}} d t$
$f^{\prime}(x)=-e^{\cos ^{2}(x)} \cdot(-\sin x)+e^{\sin ^{2} x} \cos (x)$.
$f^{\prime}(0)=1>0 \quad$ so increasing
3. John leaves his house at time $t=0$ and travels along a straight road. His velocity, in $\mathrm{km} / \mathrm{hr}$ is given by the function $v_{1}(t)=60 \sin \left(t^{2}\right) t$.
a) Write a Riemann sum with $n=4$ subdivisions, taking the sample points to be right points (i.e. a right hand sum) that approximates the distance traveled by the car during the first 2 hours of John 's trip. Evaluate the sum giving a decimal approximation of your final answer.

$$
\begin{aligned}
& 0 \frac{1}{2} \frac{3}{2} \quad \Delta x=\frac{2}{4}=\frac{1}{2} \\
& d=\frac{1}{2}\left(\frac{60}{2} \sin \left(\frac{1}{4}\right)\left|+|60 \sin (1)|+\left|60 \cdot \frac{3}{2} \sin \left(\frac{9}{4}\right)\right|+|60 \cdot 2 \cdot \sin 4|\right)\right.
\end{aligned}
$$

$$
1 \approx 109.38 \mathrm{~km}
$$

b) John reaches his final destination after 3 hours. How far is this destination from John's house? Give a decimal approximation.

$$
\begin{aligned}
& s(3)-s(0)=\int_{0}^{3} 60 t \sin \left(t^{2}\right) d t \\
& u=t^{2} \\
& d u=2 t d t \quad 30 \int_{0}^{9} \sin (u) d u=-\left.30 \cos u\right|_{0} ^{9}=30-30 \cos 9=57.33 \mathrm{~km}
\end{aligned}
$$

4. Calculate the area of the region in the fourth quadrant bounded by the curves $x=4 y^{2}$ and $y=-\frac{x^{2}}{2}$

$$
\text { Find intersections: }\left\{\begin{array}{l}
x=4 y^{2} \\
y=-\frac{1}{2} \cdot 16 y^{4}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
-\frac{1}{8} y=y^{4}, y=0,-\frac{1}{2} \\
x=0,1
\end{array}\right.
$$

To integrate in $d x$ solve $x=4 y^{2}$ for $y: y= \pm \sqrt{\frac{x}{4}}$
in fourth quadrant $y \leq 0$ so $y=-\frac{\sqrt{x}}{2}$
$\int_{0}^{1}-\frac{x^{2}}{2}+\frac{\sqrt{x}}{2} d x=-\frac{1}{6} x^{3}+\left.\frac{1}{3} x^{3 / 2}\right|_{0} ^{1}=\frac{1}{3}-\frac{1}{6}=\frac{1}{6} \approx 0.17$
OR To integrate in dy solve $y=-\frac{x^{2}}{2}$ for $x: x^{2}=-2 y$ $x= \pm \sqrt{-2 y}$ in fourth quadrant $x \geq 0$ so $x=\sqrt{-2 y}$
$\int_{-\frac{1}{2}}^{0} \sqrt{-2 y}-4 y^{2} d y=\frac{-1}{3}(-2 y)^{3 / 2}-\left.\frac{4}{3} y^{3}\right|_{-\frac{1}{2}} ^{0}=\frac{1}{3}-\frac{1}{6}=\frac{1}{6} \approx 0.17$

