

Read 3.1,3.2 and 3.3

Derivatives calculations

The tangent line problem

f(x)	f'(x)	textbook section
c constant	0	3.1
x^n , any real number n	nx^{n-1}	3.1
e ^x	e ^x	3.1
sin x	cos x	3.3
COS X	$-\sin x$	3.3
tan x	$\sec^2 x$	3.3
cot x	$-\csc^2 x$	3.3
sec x	sec x tan x	3.3
CSC X	$-\csc x \cot x$	3.3

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Calculate the derivative of

•
$$f(x) = x^2$$

•
$$f(x) = x^{\sqrt{2}}$$

•
$$f(x) = x^e$$

•
$$f(x) = \pi^e$$

•
$$f(x) = \sqrt{x}$$

•
$$f(x) = \frac{1}{x^2}$$

Derivation rules

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

The derivative of $\tan x$

 $(\tan x)' =$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Calculate $(3 \sin x)'$

 $\left(\frac{3}{\sin x}\right)'$

 $\left(\frac{e^x}{x^2}\right)'$

Calculate
$$(e^{\sqrt{2}}x)'$$

 $\frac{d}{dr}(\frac{r}{ar+k})$

$$(x(x-1))'$$

Calculate (|x|)'

Find the second derivative of $f(x) = 3x^2$, $g(x) = e^x$, $h(x) = \sqrt{x} - 1$

The tangent line problem

The equation to the tangent line to the curve y = f(x) through a point $P = (x_0, f(x_0))$ on the curve is

$$y = f(x_0) + f'(x_0)(x - x_0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The tangent line problem

To find the equation to the tangent line to the curve y = f(x)through a point $P = (x_0, y_0)$ NOT on the curve:

- ► Call Q = (x, y) = (x = f(x)) the unknown point of tangency on the curve.
- Write the equation of the slope of the tangent m in two different ways, set them equal, and solve for x

$$m = f'(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

If x = x₁ is the solution you found, then the tangent line is y = f(x₁) + f'(x₁)(x − x₁) Find the equation of the tangent line to the curve $y = x^2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- going through P = (2, 4)
- going through Q = (2, 2)
- parallel to the line y = 3x + 1