

Read 2.7 and 2.8

 $f'(x_0)$  for multipart functions

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The derivative function

Is f differentiable at  $x_0 = 0$  if

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$



Is f(x) = |x| differentiable at  $x_0 = 0$ ?

<ロト < 団ト < 団ト < 団ト < 団ト 三 のQの</p>

Recall

- ► f'(x<sub>0</sub>) is the slope of the tangent line to f at x<sub>0</sub>, sometimes we say the slope of f at x<sub>0</sub>.
- $f'(x_0)$  tells us how f is changing at  $x_0$ , increasing a lot (when  $f'(x_0)$  is a big positive number), increasing a little (when  $f'(x_0)$  is a small positive number), staying constant (when  $f'(x_0) = 0$ ), decreasing a lot (when  $f'(x_0)$  is a big negative number), decreasing a little (when  $f'(x_0)$  is a small negative number) a small negative number)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

•  $f'(x_0)$  is the rate of change of f at  $x_0$ 

# 2.7, 2.8 The derivative function

Given f(x) we can calculate  $f'(x_0)$  for different values of  $x_0$ 

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

## Example

If f(x) = 2x calculate  $f'(x_0)$  when  $x_0 = 1, 2, 3$ . Find a general formula for f'(x)

## Given $f(x) = \sqrt{x+2}$ calculate f'(x)

## Differentiable functions

A function is called differentiable if  $f'(x_0)$  exists for every  $x_0$  in the domain of f

# Second derivatives

The second derivative of f at  $x_0$  is the derivative of the function f'(x) at  $x = x_0$ , in other words is  $(f')'(x_0)$ . We will denote it by  $f''(x_0)$  or  $\frac{d^2f}{dx^2}(x_0)$ 

A D N A 目 N A E N A E N A B N A C N

Example

Calculate f''(x), if f(x) = 2x

#### Note

The second derivative of the position function s(t) gives you the acceleration a(t) of the moving object.

#### Higher order derivatives

We can also take the derivative of the second derivative of a function f, and call it the third derivative of f, in formulas (f'')'(x) = f'''(x), and so on we can define 4th, 5th,...,nth derivatives

# Relations between f', f

# f' f f''positive increasing negative decreasing increasing concave up positive decreasing concave down negative

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで