

Read 2.5 and 2.7

More on continuity

The derivative of f at x_0

Which values of m, if any, make f a continuous function ?

$$f(x) = \begin{cases} mx + 4 & \text{if } x \le 1\\ 3 - x^2 & \text{if } x > 1 \end{cases}$$

A function f is continuous at x_0 from the right if:

- ▶ *f* is defined at *x*₀ and
- $\blacktriangleright \lim_{x \to x_0^+} f(x) = f(x_0)$
- Intuitive graphical explanation is that we don 't see any holes or gaps in the graph of f at x₀ if we don t look to the left of x₀

A function f is continuous at x_0 from the left if:

• f is defined at x_0 and

$$\blacktriangleright \lim_{x \to x_0^-} f(x) = f(x_0)$$

Intuitive graphical explanation is that we don 't see any holes or gaps in the graph of f at x₀ if we don t look to the right of x₀

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

2.7 . Derivatives

Recall from lesson 3 that we often consider $\lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \lim_{h \to 0} \frac{f(x_1 + h) - f(x_1)}{h}$ This value (when it exists) is called the derivative of f at x_1 and denoted by $f'(x_1)$ or $\frac{df}{dx}(x_1)$. When the limit exists we say that f is differentiable at x_0 . What are the units of $f'(x_0)$?

Also recall that $f'(x_1)$ is a number that is :

- 1. The slope of the tangent to the curve y = f(x) at $P = (x_1, f(x_1))$.
- 2. The (instantaneous) rate of change of f at $t = x_1$.

The number of bacteria present in a Petri dish at time t, in hours, is given by the function y = f(t)

▶ What are the units of f'(5)?

What is the meaning of f'(5) ?

• What does f'(5) = 2000 tell you ?

• What does
$$f'(6) = 0$$
 tell you ?

What does the sign of f'(t) tell you ?

Let $f(x) = x^2 + 2$. Using the definition of derivative calculate f'(1).

Graphical estimate

◆□▶◆□▶◆≧▶◆≧▶ ≧ りへぐ

Tangent line equation

The line tangent to y = f(x) at $P = (x_0, f(x_0))$ is $y = f(x_0) + f'(x_0)(x - x_0)$

Note

If f is differentiable at x_0 then it is continuous at x_0

A function that is continuous, but not differentiable at x_0

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

We can easily tell that f is not differentiable at x_0 if

- f is not continuous at x₀.
- The graph of f had a sharp corner at x_0 .
- The graph of f is vertical at x_0 .

Win 09 midterm (Nichifor)