

Read 2.3 and 2.6

More limit calculations

The $\lim_{x\to *} f(x)$

- If * = x₀ first check if f is continuous at x₀, if it is, the answer is f(x₀)
- 2. If f is not continuous at x_0 or $* = \infty$
 - Can you apply limit laws ?
 - Is the limit of the form ^k/₀, with k ≠ 0 ?
 In this case you can use limit laws if you have a limit of the form ^k/_{0⁺} or ^k/_{0⁻}; otherwise, if the denominator sign does not stay positive or negative, close to the limit x₀, consider the limits from the right and the left separately

If f is not continuous at x_0 or $* = \infty$ and you cannot apply the limit laws because either some limit does not exists (ex $\lim_{x\to\infty} \sin x$) or you have an indeterminate form: $\infty - \infty, \frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty$ you need to do something else (see next slide)

Limit calculations techniques

- 1. Algebra
- 2. Rational functions.
- 3. Rationalize
- 4. Squeeze theorem
- 5. De l'Hospital (sec 4.4)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Suppose $\lim_{x\to 1} f(x) = 4$ and $\lim_{x\to 1} g(x) = -1$ Calculate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\lim_{x\to 1}(f(x)+g(x))$$

$$\lim_{x\to 1} \sqrt{f(x)}$$

Calculate $\lim_{x\to 1} \frac{x-2}{x^2-4}$

 $\lim_{x\to 2} \frac{x-2}{x^2-4}$

 $\lim_{x\to 2} \frac{x-1}{(x-2)^2}$

(ロ)、(型)、(E)、(E)、 E) の(()

$$\lim_{x\to 2} \frac{x-1}{x-2}$$

$$\lim_{x\to\infty}\frac{x-1}{x-2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Question

Are
$$f(x) = \frac{x-2}{x^2-4}$$
 and $g(x) = \frac{1}{x+1}$ the same function ?

Can we interpret the limits that we have calculated in the previous pages graphically ?

Horizontal asymptote

The line y = L is called an horizontal asymptote for y = f(x) if either $\lim_{x\to\infty} f(x) = L$ or $\lim_{x\to-\infty} f(x) = L$

Vertical asymptote

The line x = a is called a vertical asymptote for y = f(x) if either $\lim_{x \to a^+} f(x) = \pm \infty$ or $\lim_{x \to a^-} f(x) = \pm \infty$

Rational functions

A rational function is a function of the form $f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \cdots a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \cdots b_1 x + b_0}$, when we compute limits we are interested in looking at the highest power of x on top and the highest power of x on the bottom , so we can think of a rational function as $f(x) = \frac{a_n x^n + \cdots}{b_m x^m + \cdots}$

 $\lim_{x\to\infty} \frac{a_n x^n + \cdots}{b_m x^m + \cdots}$

- If n < m the limit is 0
- If n > m the limit +∞ if a_n and b_m have the same sign, -∞ if a_n and b_m have opposite signs

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• If n = m the limit is $\frac{a_n}{b_n}$

Compute the following limit $\lim_{x\to\infty}\frac{x^2-4+x}{x-2}$

Compute the following limit $\lim_{x\to\infty}\frac{x^2-4+x}{x^2-2}$

Compute the following limit $\lim_{x\to\infty}\frac{x^2-4+x}{x^3-2}$

Rationalizing

Rationalizing often helps when calculating limits with terms of the form $a\pm\sqrt{x+a^2}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Calculate
$$\lim_{x\to 0} \frac{1}{x\sqrt{x+1}} - \frac{1}{x}$$

Squeeze theorem

If
$$g(x) \leq f(x) \leq h(x)$$
 for all x close to x_0 and

$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = L$$
 then

$$\lim_{x \to x_0} f(x) = L$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Example

Calculate $\lim_{x\to 0} x^2 \sin(\frac{1}{x})$

(ロ)、(型)、(E)、(E)、 E) の(()

Example

Calculate $\lim_{x\to 0} x \sin(\frac{1}{x})$

(ロ)、(型)、(E)、(E)、 E) の(()