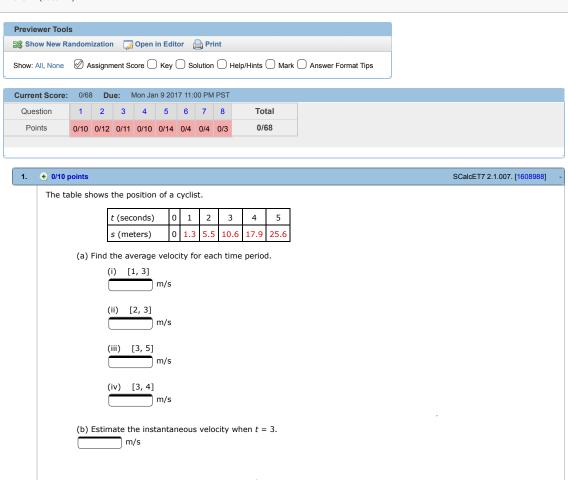
Lesson 3

Read 2.2


The intuitive concept of limit

Assignment Previewer.pdf

Saved to Dropbox • Dec 18, 2016, 1:21 PM

Assignment Previewer

hw02S2.1 (9966474)

2. • 0/12 points SCalcET7 2.1.001.MI. [3235104] -

A tank holds 5000 gallons of water, which drains from the bottom of the tank in half an hour. The values in the table show the volume V of water remaining in the tank (in gallons) after t minutes.

t (min)	5	10	15	20	25	30
V (gal)	3475	2225	1275	545	125	0

(a) If P is the point (15, 1275) on the graph of V, find the slopes of the secant lines PQ when Q is the point on the graph with the following values. (Round your answers to one decimal place.)

Q slope (5, 3475) (10, 2225) (20, 545) (25, 125)

2.2 Limits

Given some function f defined around x = 2, how do we compute $\lim_{x\to 2} f(x)$?

Graphical interpretation and conventions.

(two sided) limit

Asking to calculate $\lim_{x\to 2} f(x)$ is asking what happens to f(x) when x gets closer and closer to 2.

Limit from the right

Asking to calculate $\lim_{x\to 2^+} f(x)$ is asking what happens to f(x) when x gets closer and closer to 2 from the right, that is staying bigger than 2.

Limit from the left

Asking to calculate $\lim_{x\to 2^-} f(x)$ is asking what happens to f(x) when x gets closer and closer to 2 from the left, that is staying smaller than 2.

Guess the values of $\lim_{x\to 0^+}\frac{1}{x}$, $\lim_{x\to 0^-}\frac{1}{x}$, $\lim_{x\to 0}\frac{1}{x}$ and $\lim_{x\to 0}\frac{1}{x^2}$

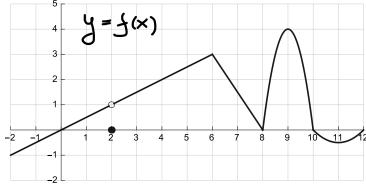
limits to infinity

(Limit to $+\infty$)

Asking to calculate $\lim_{x\to+\infty} f(x)$ is asking what happens to f(x) when x gets bigger and bigger

(Limit to
$$-\infty$$
)

Asking to calculate $\lim_{x\to-\infty} f(x)$ is asking what happens to f(x) when x gets more and more negative


Guess the values of $\lim_{x\to\infty}\frac{1}{x}$, $\lim_{x\to-\infty}\frac{1}{x}$, $\lim_{x\to\infty}\frac{1}{x^2}$, $\lim_{x\to\infty}\frac{1}{x^2}$, $\lim_{x\to\infty}\frac{1}{x^2}$, and $\lim_{x\to\infty}\sin x$,

The answer to the question : compute $\lim_{x\to anything} f(x)$ can be

- ▶ a number *L*
- $\rightarrow +\infty$
- $-\infty$
- ▶ DNE (for example when the limit from the right and the left are different, or when the function oscillates)

Caution: the book sometimes says that $\lim_{x\to *} f(x)$ DNE when instead it is ∞ or $-\infty$

- 4. (12 total points) For this problem, refer to the pictured graph of the function y = f(x) on the interval [-2,12].
 - (a) (2 points) $\lim_{x \to 7} \frac{f(x) f(7)}{x 7} =$

(b) (2 points) $\lim_{x \to 2} f(x) =$

(2 points)
$$\lim_{x\to 2} f''(x) =$$

(d) (2 points)
$$\lim_{x \to 2} \frac{f(x)}{x} =$$

(2 points) Circle the smallest number in this list:

$$f'(0)$$
 $f'(1)$ $f'(7)$ $f'(9)$ $f'(11)$

(f) (2 points) Give an interval (a,b) on which f'(x) is increasing.