

Read 4.4 and 4.5

Limits of functions of the form $f(x)^{g(x)}$

(ロ)、(型)、(E)、(E)、 E) の(()

Function graphing

How to compute $\lim f(x)^{g(x)}$

- 1. Write $f(x)^{g(x)} = e^{\ln(f(x)) \cdot g(x)}$
- 2. Calculate $\lim \ln(f(x)) \cdot g(x)$
- 3. Compute original limit (see table in next page)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

$\lim \ln(f(x)) \cdot g(x)$	$\lim e^{\ln(f(x)) \cdot g(x)}$
DNE	DNE
$+\infty$	$+\infty$
$-\infty$	0
L	e ^L

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Calculate $\lim_{x\to\infty} x^x$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Function graphing

Horizontal asymptotes

The line y = c is an horizontal asymptote for y = f(x) is $\lim_{x \to +\infty} f(x) = c$ or $\lim_{x \to -\infty} f(x) = c$

Vertical asymptotes

The line x = a is an horizontal asymptote for y = f(x) is $\lim_{x \to a^+} f(x) = \infty$ or $\lim_{x \to a^-} f(x) = \infty$

Inflection points

An inflection point for y = f(x) is a point (c, f(c)) on the curve y = f(x) where the curve is continuous and changes concavity. If f''(c) = 0 and f''(x) < 0 for x < c and f''(x) > 0 for x > c or viceversa (f''(x) > 0 for x < c and f''(x) < 0 for x > c) then (c, f(c)) is an inflection point for y = f(x).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

To graph y = f(x)

- 1. Determine the domain of f
- 2. x and y intercepts.
- 3. Compute horizontal and vertical asymptotes.
- 4. Compute f'(x) and determine the intervals where f is increasing and decreasing.
- 5. Find the local minima and maxima for f.
- 6. Compute f''(x) and determine the inflection points and the intervals where f is concave up and down.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Draw the graph of $f(x) = xe^{-x^2}$ Domain : for which values of x can we compute f(x) ?

Horizontal asymptotes : Compute $\lim_{x\to-\infty} f(x)$ if the domain of f allows it

Compute $\lim_{x\to\infty} f(x)$ if the domain of f allows it

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Vertical asymptotes : if f is not defined at x = a but it is defined to the left of a compute $\lim_{x\to a^-} f(x)$

if f is not defined at x = a but it is defined to the right of a compute $\lim_{x\to a^+} f(x)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Compute f'(x), intervals of increase, decrease, local min and max

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Compute f''(x), inflection points and intervals where f is concave up and down.

(ロ)、(型)、(E)、(E)、(E)、(O)()

Find x and y intercepts

・ロ> < 回> < 三> < 三> < 三> < 三> < ○

Draw graph

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ▲ 臣 → りへぐ