

Read 4.4

De l Hospital rule

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � � �

When

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

results in an indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ if g'(x) is different from 0 around *a*, except possibly at *a* you can calculate

$$\lim_{x\to a}\frac{f'(x)}{g'(x)}$$

and if this latter limit exists then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◇

Explanation

<□▶ <圖▶ < ≧▶ < ≧▶ = ● ● <

Compute $\lim_{x\to\infty} \frac{x}{\ln x}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ▲ 臣 → のへで

Compute $\lim_{x\to\infty} \frac{e^x}{x}$

Compute $\lim_{x\to\infty} \frac{e^x}{x^2}$

o notation

We write $\ln(x) = o(x)$ (for $x \to \infty$) to mean that $\lim_{x\to\infty} \frac{\ln x}{x} = 0$. Intuitively this says $\ln x$ is much smaller than x for "'big"' values of x

In general we write f(x) = o(g(x)) (for $x \to \infty$) to mean that $\lim_{f(x)\to\infty} \frac{f(x)}{g(x)} = 0$. Intuitively this says f(x) is much smaller than g(x) for "'big"' values of x

NOTE

every function in the list below is o() of the function(s) to its right:

sin xand cos x, ln x, $(\ln x)^{n}(n > 1), \sqrt{x}, x, x^{n}(n > 1), e^{x}$

(ロ)、<</p>

Compute
$$\lim_{x\to\infty} \frac{(\ln x)^{10}}{x^5}$$

Compute
$$\lim_{x\to\infty} \frac{(x+\sin x)\ln x}{xe^x}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Compute $\lim_{x\to\infty} x - \ln x$

Compute $\lim_{x\to 0^+} \frac{x}{\ln x}$

Compute
$$\lim_{x \to \frac{\pi}{2}} \frac{x - \frac{\pi}{2}}{\cos x}$$

What is the linearization of $\cos x$ at $x = \frac{\pi}{2}$?

<ロ> < 団> < 団> < 三> < 三> < 三> < □> < □> < □> < ○<</p>

Compute $\lim_{x\to 0} \frac{7 \sin x - 7x}{x^3}$

What is the linearization of $\sin x$ at x = 0?

Compute $\lim_{x\to 0} \frac{7 \sin x - 7x}{x^3}$ using o()

<ロト < 団ト < 団ト < 団ト < 団ト 三 のQの</p>