Lesson 2

Read 2.1

Tangent lines

Average and instantaneous velocity

Average and instantaneous rate of change

Common misconceptions on tangent lines

A curve and its tangent at some point P intersect only at P. NOT ALWAYS TRUE.

The tangent to a curve at P is perpendicular to OP.NOT ALWAYS TRUE

< ロ > < 団 > < 三 > < 三 > < 三 > < つ < ()

Tangent to a general curve y = f(x)

Given two points on the curve $P = (x_1, f(x_1))$ and $Q = (x_2, f(x_2))$ the slope of the line through P and Q is $\frac{f(x_2) - f(x_1)}{x_2 - x_1}$

What happens when we move x_2 closer and closer to x_1 ? Maple animation.

When we move x_2 closer and closer to $x_1 \frac{f(x_2)-f(x_1)}{x_2-x_1}$ gets closer and closer to the slope of the tangent line to the curve y = f(x) at P.

Average velocity

If an object moves on a straight line and its position at time t (with respect to a given origin O) is given by s(t) then its average velocity in the time interval $[t_1, t_2]$ is given by (distance traveled)/time=

$$v = rac{s(t_2) - s(t_1)}{t_2 - t_1}$$

Instantaneaous velocity

How can we calculate the instantaneous velocity | at time t?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Geometric interpretation

Consider the curve y = s(t),

- The average velocity in the time interval [t₁, t₂] is $v = \frac{s(t_2) s(t_1)}{t_2 t_1} \text{ and can be interpreted as the slope of the line that goes through the points P = (t₁, s(t₁)) and Q = (t₂, s(t₂))$
- The instantaneous velocity at t₁ is v(t₁) = lim_{t₁→t₂} s(t₂)-s(t₁)/t₂-t₁ and it can be interpreted as the slope of the line tangent to the curve y = s(t) at the point P = (t₁, s(t₁))

Rate of change of a function

The average rate of change of any function y = f(t) over the interval $[t_1, t_2]$ is given by $\frac{f(t_2)-f(t_1)}{t_2-t_1}$

The instantaneous rate of change of any function y = f(t) at t_1 is given by $\lim_{t_2 \to t_1} \frac{f(t_2) - f(t_1)}{t_2 - t_1}$

Geometrically the average rate of change above is the slope of the line going through the points $P = (t_1, f(t_1))$ and $Q = (t_2, f(t_2))$.

Geometrically the instantaneous rate of change above is the slope of the line tangent to the curve y = f(t) at the point $P = (t_1, f(t_1))$

	Assignment Previewer.pdf Saved to Dropbox • Dec 18, 2016, 1:21 PM
ssignment F	reviewer
v02S2.1 (996	3474)
Previewer	iools w Randomization 🛛 Open in Editor 🔒 Print
Show: All, N	
Current Sc Question	ore: 0/68 Due: Mon Jan 9 2017 11:00 PM PST 1 2 3 4 5 6 7 8 Total
Points	0/10 0/12 0/11 0/10 0/14 0/4 0/3 0/68
	/10 points SCalcET7 2.1.007. [16]
	/10 points SCalcET7 2.1.007. [16] e table shows the position of a cyclist.
	t (seconds) 0 1 2 3 4 5
	s (meters) 0 1.3 5.5 10.6 17.9 25.6
	(a) Find the average velocity for each time period.
	(i) [1, 3]
	m/s
	(ii) [2, 3]
	(iii) [3, 5]
	(iv) [3, 4]
	(b) Estimate the instantaneous velocity when $t = 3$. m/s
	/12 points SCalcET7 2.1.001.MI. [32:
	ank holds 5000 gallons of water, which drains from the bottom of the tank in half an hour. The values in the table show t lume <i>V</i> of water remaining in the tank (in gallons) after <i>t</i> minutes.
	t (min) 5 10 15 20 25 30
	V (gal) 3475 2225 1275 545 125 0
	(a) If <i>P</i> is the point (15, 1275) on the graph of <i>V</i> , find the slopes of the secant lines PQ when <i>Q</i> is the point on the graph of <i>V</i> and the slopes of the secant lines PQ when <i>Q</i> is the point on the graph of <i>V</i> .
	with the following values. (Round your answers to one decimal place.)
	Q slope (5, 3475)
	Q slope