

Read 3.5, 3.6

Logarithmic differentiation

Derivatives of inverse functions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

formulas to know

$$\blacktriangleright (\ln x)' = \frac{1}{x}$$

•
$$(\arctan x)' = \frac{1}{1+x^2}$$

•
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

•
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

(ロ) (型) (主) (主) (三) のへで

Derivative of the inverse of a function

In order to calculate $(f^{-1})'$

- Consider y = f⁻¹(x) so then f(y) = x; write instead y = y(x), and f(y(x)) = x. (*).
- ▶ Take the derivative with respect to x of both sides of (*).
- You get $\frac{df}{dy} \frac{dy}{dx} = 1$.
- You get $\frac{dy}{dx}(x) = \frac{1}{\frac{df}{dy}(y)}$. Simplify and get a formula in x

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example. Derive the formula $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Example. Derive the formula $(\ln x)' = \frac{1}{x}$

Calculate the derivative of ln(|x|)

Calculate the derivative of $\ln(3x + \ln(3x + \ln(3x))))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Logarithmic differentiation

This method is used to find derivatives of functions of the form $g(x)^{h(x)}$

- Write $y = g(x)^{h(x)}$ and take In of both sides.
- You get ln(y) = h(x) ln(g(x)). Now differentiate both sides with respect to x.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- You get $\frac{1}{y}y' = h' \ln g + h\frac{g'}{g}$. Solve for y'.
- ► You get $y' = y(h' \ln g' + h \frac{g'}{g})$. Replace y with $g(x)^{h(x)}$.
- Vour final answer is $y'(x) = g(x)^{h(x)} (h'(x) \ln(g(x)) + h(x) \frac{g'(x)}{g(x)}).$

Alternative method to calculate derivatives of functions of the form $g(x)^{h(x)}$

Write $f(x) = g(x)^{h(x)}$ so $f(x) = e^{\ln g(x)h(x)}$ and use the chain rule.

Calculate the derivative of $f(x) = x^x$

Calculate the derivative of $f(x) = (x + 1)^{\cos x \sin x}$

Write the equations of the tangent lines to the ellipse $C = \frac{x^2}{25} + \frac{y^2}{9} = 1$ at $P = (5\frac{\sqrt{3}}{2}, \frac{3}{2})$

Write the equations of the tangent lines to the curve

$$x = 5\sin(\pi t)$$
$$y = 3\cos(\pi t)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

at $P = (5\frac{\sqrt{3}}{2}, \frac{3}{2})$