

Read 3.5

Implicit differentiation

Recall $\frac{d}{dx}(\sin x)^2 = 2\sin x \cos x$ In general $\frac{d}{dx}(y(x))^2 =$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Curve defined implicitly

A curve is defined implicitly if it is defined by a formula of the form F(x, y) = G(x, y).

An example of a curve defined implicitly is the circle of radius 1 defined by the formula $x^2 + y^2 = 1$.

We can think that the equation F(x, y) = G(x, y) defines a function y = y(x) even if we are not able to solve explicitly for y. To find $\frac{dy}{dx}$ pretend we can solve for y and write F(x, y(x)) = G(x, y(x)), then take the derivative with respect to x of both sides and solve for $\frac{dy}{dx}$. The equation of the tangent line to the curve defined implicitly by F(x, y) = G(x, y) at $P = (x_0, y_0)$ on the curve is $y = y_0 + \frac{dy}{dx}(x_0)(x - x_0)$.

(日)((1))

Find the equation of the tangent line to the curve $x^3 + y^3 = 6xy$ at P = (3,3)

Find $\frac{dy}{dx}$ by implicit differentiation if $\sqrt{xy} = 1 + x^2y$

・ロト・(型ト・(型ト・(型ト))

Find the coordinates of all points *P* on the curve $x^2 + 2xy + y^3 = 0$ such that the tangent line to the curve at *P* is horizontal.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Given a curve *C* of equation F(x, y) = G(x, y), to find all points on *C* with horizontal tangent first use implicit differentiation to calculate the derivative, say you found the formula $\frac{dy}{dx} = h(x, y)$, then solve the system,

$$F(x, y) = G(x, y)$$
$$h(x, y) = 0$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If $h(x, y) = \frac{A(x, y)}{B(x, y)}$, to find all points on *C* with vertical tangent line solve the system

$$F(x, y) = G(x, y)$$
$$B(x, y) = 0$$

and check that for every solution (x_1, y_1) we have $A(x_1, y_1) \neq 0$ (if it is 0 we are not sure what is happening to the tangent)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The tangent line problem for P is not on the curve

To find the equation to the tangent line to the curve F(x, y) = G(x, y) through a point $P = (x_0, y_0)$ NOT on the curve:

- Call Q = (x, y) the unknown point of tangency on the curve.
- ▶ Write the equation of the slope of the tangent *m* in two different ways , set them equal $m = \frac{dy}{dx} = \frac{y-y_0}{x-x_0}$, and solve the system

$$\frac{dy}{dx} = \frac{y - y_0}{x - x_0}$$
$$F(x, y) = G(x, y)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• If (x_1, y_1) is a solution you found, then a tangent line is $y = y_1 + \frac{dy}{dx}(x_1)(x - x_1)$ Find all tangents to the ellipse $x^2 + y^2 = 1$ through $P = (4, \frac{1}{4})$

(ロ)、(型)、(E)、(E)、 E) の(()

Find y'' by implicit differentiation if $9x^2 + y^2 = 9$