

Read 3.4

Chain rule

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Composition

A composite function is of the form y = f(g(x))Examples Functions of the following forms are composite :

$$e^{e^{e^{p}}}, \sqrt{e^{p}}, (e^{p})^{n}, \ln(e^{p}), \sin(e^{p}), \cos(e^{p})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The chain rule

$$(f(g(x))' = f'(g(x))g'(x)$$

If
$$y = f(g(x))$$
 and $u = g(x)$ then $\frac{dy}{dx} = \frac{df}{du}(u)\frac{du}{dx}(x)$

Calculate the derivatives of the following functions :

► e^{2x}

• $\sqrt{\frac{\sin x}{x}}$

Find the 100th derivative of $f(x) = e^{3x}$

General formula

$$\left(a^{x}
ight)'=\ln(a)\;a^{x}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Air is being pumped into a spherical weather baloon. At any time t, the volume of the baloon is V(t) and the radius is r(t). What do $\frac{dV}{dt}$ and $\frac{dr}{dt}$ represent? Express $\frac{dV}{dt}$ in terms of $\frac{dr}{dt}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・