2.7

The derivative of $f(x)$ at a point $x 0$ $f^{\prime}(x 0)$

Given any function $f(x)$ and point xo on the x axis we can calculate

$$
\begin{array}{r}
f^{\prime}\left(x_{0}\right), \frac{d f}{d x}\left(x_{0}\right) \\
\lim _{x \rightarrow x o} \frac{f(x)-f(x 0)}{x-x 0}
\end{array}
$$

If this limit exists and it is finite, we will say f is differentiable at $x 0$ and use the following notation

To denote the derivative of f at $x 0$.

 (note :it is a number, what are its units?)$\frac{\text { units for } f}{\text { units for } x}$

$f^{\prime}(x 0)$

$f^{\prime}\left(x_{0}\right)$ gives us

- Slope of tangent at x_{0}, through
- Rate of change at $x_{0} \quad P\left(x_{0}, f\left(x_{0}\right)\right.$
- velocity

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow 0 x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

$$
v(t 0)=\lim _{t 1 \rightarrow t 0} \frac{s(t 1)-s(t 0)}{t 1-t 0}=s^{\prime}(t 0)
$$

Where $s(t)$ is the position function.
Book also uses $\mathrm{d}(\mathrm{t})$ instead of $\mathrm{s}(\mathrm{t})$.
Discuss difference between position and distance travelled.

Equivalent limit definition

- $x=x 0+h$

$$
f^{\prime}\left(x_{0}\right)=
$$

$$
\lim _{x \rightarrow x o} \frac{f(x)-f(x 0)}{x-x 0}
$$

$$
=\lim _{h \rightarrow 0} \frac{f(x 0+h)-f(x 0)}{h}
$$

- The number of bacteria present in a Petri dish t hours after the start of an experiment is given by the function $y=f(t)$.
- What is the meaning of $f^{\prime}(5)$? rate at which
- What are the units of $f^{\prime}(5)$? is chansing at $t=S$
- What does $f^{\prime}(5)=2000$ tell you ?
- What does $f^{\prime}(6)=0$ tell you? rate of change
- What does the sign of $f^{\prime}(5)$ tell you ?
wether $f(t)$ is increasing $\left(\delta^{\prime}(f)>0\right) \begin{gathered}\text { or dicreasing } \\ (j)(j)<0)\end{gathered}$

$$
f^{\prime}(5)=2000
$$

At $t=5$ number of bacteria in Petri dish is increasing at a rate of 2000 bactere/hour

Horizontal tangent Pine

More of this in ch 4

Using the definition of derivative calculate

- $f^{\prime}(1)$, where $f(x)=x^{\wedge} 2+2$.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\frac{(1+h)^{2}+2-\left(1^{2}+2\right)}{h} \\
& =\frac{(1+h)^{2}-1}{h}=\frac{x+h^{2}+2 h+t^{2}}{h}=h+2 \\
& \rightarrow 2 \\
& f^{\prime}(1)=2
\end{aligned}
$$

Estimele $f^{\prime}(0 . z)=$ slope tengent line

$$
\begin{aligned}
& \frac{\Delta y}{\Delta x}=-\frac{0.2}{0.2}=-1 \text {. Find the epuelion of } \\
& \text { tengent line } \\
& X_{0}=0,2 \\
& \text { M坔正 } \\
& 082 \text { b2t brt } y=0.8-(x-0.2)
\end{aligned}
$$

Note if f is differentiable at x_{0} then f is continuous at x_{0}

Why?
equetion of tongent line

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

$\operatorname{so} \lim _{x \rightarrow 0} f(x)=f\left(x_{0}\right)$

$$
\begin{aligned}
& \lim _{x \rightarrow x_{0}} f(x)=\int_{x \rightarrow 0}^{1-1} \frac{f(x)-f\left(x_{0}\right)+f\left(x_{0}\right)}{x-x_{0}}\left(x-y_{0}\right) \\
& =\lim _{x \rightarrow \Delta y_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\left(x-x_{0}\right)+f\left(x_{0}\right)=f\left(x_{0}\right)
\end{aligned}
$$

Graphicelly
 f is not dfferentiable at $\mathrm{x0}$ if

- f is not continuous at x 0
- The graph of f has a corner at $x 0$
- The graph of f is vertical at $x 0$ (tangent line is vertical).
- Problem from Win09 mid1 (Nichifor)

2 (12 pts=3+3+2+4) Below is the graph of a function, $y=f(x)$. Use it to answer the following questions, no justification needed:

a) State all the values a for which $f(x)$ is not continuous at $x=a$.
$0,3,7$
b) State all the values a for which $f(x)$ is not differentiable at $x=a$.

$$
0,3,72,5
$$

c) Evaluate the two limits at infinity:

$$
\lim _{x \rightarrow+\infty} f(x)=6 \quad \text { and } \quad \lim _{x \rightarrow-\infty} f(x)=0
$$

d) Sketch the portion of the graph of the derivative function $f^{\prime}(x)$ corresponding to the interval $0 \leq x \leq 6$.

- Is the following function $f(x)$ differentiable at 0 ?

$$
\begin{aligned}
& f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases} \\
& \lim _{h \rightarrow \infty} \frac{f(0+h)-f(0)}{h}=\frac{h^{2} \sin \left(\frac{1}{h}\right)}{h}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} h \sin \left(\frac{1}{h}\right) \\
& -1 \leqslant \sin \left(\frac{1}{h}\right) \leqslant 1 \quad \text { implies } \\
& -h \leq h \sin \left(\frac{1}{h}\right) \leqslant h>0 \\
& \text { if }_{h} h>0
\end{aligned}
$$

The squeeze th tells me

$$
\lim _{h \rightarrow 0+} h \sin \left(\frac{1}{h}\right)=0
$$

$$
\begin{aligned}
& -1 \leq \sin \frac{1}{h} \leq 1 \quad \text { implies } \\
& -h \geqslant h \sin \frac{1}{h} \geqslant h \\
& \text { if } h<0
\end{aligned}
$$

The squeeze th tells me $\lim _{h \rightarrow 0^{-}} h \sin \frac{1}{h}=0$
Therefore $\operatorname{Pim}_{h \rightarrow 0} h \sin \frac{1}{h}=0=f^{\prime}(0)$ yes differentiable at 0

Tangent line problem

- Given $y=f(x)$ and $P=(x 0, y 0)$ on the graph of f the line tangent to the graph of $f(x)$ at P has slope $f^{\prime}(x 0)$ and equation:

$$
\begin{aligned}
y-y 0 & =f^{\prime}(x 0)(x-x 0) \\
y & =\dot{f}^{\circ}\left(x_{0}\right)+y^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
\end{aligned}
$$

Tangent line Problem (P not on curve)

- Given $y=f(x)$ and $P=(x 0, y 0)$ NOT on the graph of f, to find the line(s) tangent to the graph of $f(x)$ passing through P :
- Call $Q(x, y)=(x, f(x))$ the unknown point of tangency
- Write the slope m of the tangent line in two different ways and set them equal

$$
m=\frac{f(x)-y 0}{x-x 0}=f^{\prime}(x)
$$

- Solve for x; for any solution $x 1$, you have a corresponding tangent line
- $y=f(x 1)+f^{\prime}(x 1)(x-x 1)$
- Is $f(x)=|x|$ differentiable at 0 ? Graphical interpretation and calculations

