Ch 8

Composition
\[z = g(f(x)) \]

\[E \times f(x) = x^2 \]

\[g(x) = e^x \]

\[g(f(x)) = g(x^2) = e^{x^2} \]

\[f(g(x)) = \int g(x) = \int e^x = (e^x)^2 \]

If \(x = 3 \)

\[e^3 = e^9 \approx 8103 \]

\[(e^3)^2 \approx 403 \]
Ex:

\[f(x) = x^2 + 1 \]
\[g(x) = 2x + 3 \]

\[g(f(x)) = g(x^2 + 1) \]
\[= 2(x^2 + 1) + 3 = 2x^2 + 5 \]

\[f(g(x)) = f(2x + 3) = \]
\[= (2x + 3)^2 + 1 = \]
\[4x^2 + 12x + 10 \]
\[E \times \mathcal{S}(x) = \begin{cases} \circ x + 1 & \text{if } x \leq 0 \\ \circ x + x + 1 & \text{if } x > 0 \end{cases} \]

\[g(x) = 2x - 3 \]

\[g\left(\mathcal{S}(x)\right) = \begin{cases} 2(x+1) - 3 & \text{if } x \leq 0 \\ 2(2x + x + 1) - 3 & \text{if } x > 0 \end{cases} \]

\[f\left(g(x)\right) = f(2x - 3) = \begin{cases} (2x - 3) + 1 & \text{if } 2x - 3 \leq 0 \\ 2(2x - 3)^2 + (2x - 3) + 1 & \text{if } 2x - 3 > 0 \end{cases} \]
Write e^{x^3} as the composition of two functions

$f(x) = x^3 \quad g(x) = e^x$

$g(f(x)) = g(x^3) = e^{x^3}$

Write $\sqrt{x^3 + 1}$ as the composition of two functions

$f(x) = x^3 + 1 \quad g(x) = \sqrt{x}$

$g(f(x)) = \sqrt{x^3 + 1}$
\[f(x) = x + 1 \]
\[g(x) = \sqrt{x} \]

Can I consider \(g(f(x)) \)?

\[g(f(x)) = \sqrt{x + 1} \]

is only defined if \(x \geq -1 \), but \(f \) is defined for all \(x \).
General rule for domain of $g(f(x))$

1) x has to be in the domain of f

2) $f(x)$ has to be in the domain of $g(x)$

Example:

$E \times f(x) = \sqrt{x} - 1$

$g(x) = \sqrt{x}$

$g(f(x)) = g(\sqrt{x} - 1) =$

$= \sqrt{\sqrt{x} - 1}$
\[f(x) = \sqrt{x} - 1 \quad g(x) = \sqrt{x} \]

\[g(f(x)) = \sqrt{\sqrt{x} - 1} \]

Domain

\[\sqrt{x} - 1 \geq 0 \quad x \geq 0 \]

\[x \geq 1 \quad x \leq -1 \]

Domain

\[x \geq 1 \]
Range of a function

1) Graphically, if graph is available, read on y axis

2) Algebraically

Example \(f(x) = \frac{1}{x-1} \)

Set \(y = \frac{1}{x-1} \)

Solve for \(x \) \(x-1 = \frac{1}{y} \)

\(x = 1 + \frac{1}{y} \)

For which \(y \) does \(y \)
this formula make sense.

If $y \neq 0$

As long as $y \neq 0$, I get a value x in the domain of $f \quad (x \neq 1)$

so $\text{Range} f = y \neq 0$
Suppose domain of \(g(x) \) is \(-5 \leq x \leq 6\).

Range of \(g \) (all values \(g \) takes) is \(1 \leq y \leq 10 \).

\[f(x) = 4 \, x - 5 \] defined on \(-\infty < x < \infty\).
for \ g(d(x)) = g(4x - 5) \ \ \ \ (8)

Domain is

is \ -5 \leq 4x - 5 \leq 6 \n
0 \leq x \leq \frac{11}{5}

range is \ 1 \leq y \leq 10
more complicated for general \ f

for \ f(g(x)) = 4g(x) - 5 \ \ \ \ y

Domain is \ -5 \leq x \leq 6

range is: first write
\(0 \leq g(x) \leq 40 \)

then

\(0 \leq 4 \cdot g(x) \leq 40 \)

\(-1 \leq 4 \cdot g(x) - 5 \leq 35 \)

\(-1 \leq y \leq 35 \)
\[f(t) = t - 1, \quad g(t) = |t| \]

\[g(f(t)) = |t - 1| \]

\[|t - 1| = \begin{cases}
 t - 1 & \text{when } t \geq 1 \\
 -(t - 1) & \text{when } t < 1
\end{cases} \]

If \[h(t) = |t| \]
find a formula for \[h(h(t) - 2) \]

\[h(|t| - 2) = | |t| - 2 | \]
\(
\begin{align*}
\lfloor t \rfloor - 2 &= \\
\begin{cases}
 t - 2 & \text{if } t > 0 \\
 t + 2 & \text{if } t \leq 0
\end{cases}
\end{align*}
\)
Suppose \(f(x) \) is the profit made by selling \(x \) barrels of apples and \(g(x) \) is the number of barrels of apples produced by \(x \) trees. Explain the meaning of \(f(g(x)) \), "profit made by selling the barrel of apples produced by \(x \) trees."