

A bacteria population grows exponentially At time $t=1$ there are 2000 bacteria.

At time $t=2$ there are 3000 bacteria How many bacteria are there at time $t=3$?

Find exponential function through (1,2000) and $(2,3005)$

$$
f(t)=A_{0} e^{t}
$$

set up e system

$$
\begin{aligned}
& \left\{\begin{array}{l}
2000=A_{0} a^{1} \\
3000=A_{0}^{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
\frac{2000}{a}=A_{0} \\
3000=\frac{2000}{a} Q^{2}=2000 a \\
A 0=\frac{3}{2}=\frac{2000}{3}=\frac{4000}{3} \\
\left\{\begin{array}{l}
Q \\
A_{0}
\end{array}\right. \\
f(t)=\frac{4000}{3}\left(\frac{3}{2}\right) t \\
f(3)=\frac{4000}{3}\left(\frac{3}{2}\right)^{3}=4500
\end{array}\right.
\end{aligned}
$$

A bacteria population grows exponentially

Intially there are soon bacteria. It ta kos 1.3 hours to double How many bacteria will there be after 2 hours?

Doubling time 1.3 through (0,5000)

$$
\begin{aligned}
& f(t)=A_{0} a^{t} \\
& 5000=A_{0} \\
& 1.3=\frac{\ln 2}{\ln a} \\
& \ln a=\frac{\ln 2}{1.3} \\
& e^{\ln a}=e^{\frac{\ln 2}{1.3}} \\
& 11 \approx 1.7044 \\
& a(t)=5000 \cdot(1.7044)^{t} \\
& f(2)=5000 \cdot(1.7044)^{2} \approx \\
& \quad 14525
\end{aligned}
$$

Note $A_{0}=f(0)$

A bacteria population grows exponentially If it takes 2 hours To double, how long will it take to increase

$$
\begin{aligned}
& \text { S time } \text { ? } \\
& f(t)=A_{0} Q^{t} \\
& 2=\frac{\ln 2}{\ln Q} \\
& \ln Q=\frac{\ln 2}{2}, \begin{array}{l}
a=e^{\frac{\ln 2}{2}}= \\
=2^{1 / 2}=\sqrt{2}
\end{array}
\end{aligned}
$$

so $f(t)=A_{0} \sqrt{2}^{t}$
Note: As is not $K n \otimes w n$

Now we went population to increase 5 times

$$
\begin{aligned}
& S A_{0}=A_{0}(\sqrt{2})^{t} \\
& S=(\sqrt{2})^{t} \\
& \frac{\ln 5}{\ln \sqrt{2}}=t
\end{aligned}
$$

$$
\begin{aligned}
& \text { Formule: given } \\
& f(t)=A_{0} a^{t} \\
& \text { time it takes to } \\
& \text { increase } n \text { times is } \\
& t=\frac{\ln n}{\ln a}
\end{aligned}
$$

Convert

$$
f(x)=\frac{2}{3^{x-4}}
$$

"e form"
First put f int
standard form

$$
f(x)=2 \quad \frac{1}{3^{x} \cdot 3^{-4}}=
$$

$$
=2 \cdot 81 \cdot\left(\frac{1}{3}\right)^{x}
$$

$$
=162 \cdot e^{\left(\ln \frac{1}{3}\right) \cdot x}
$$

Nichifor Spring 2012
4 (13 pts) In 1990, the U.S. minimum wage was $\$ 3.80$ per hour. In 1997 , it was $\$ 5.15$ per hour. Assume the minimum wage grows according to an exponential model $W(t)$, where t represents the number of years after 1990.
a) (6 pts) Find a formula for $W(t)$.

$$
\begin{aligned}
& P(0,3.8) \quad Q(7,5.15) \\
& f(t)=A_{0} Q^{t} \\
& \left\{\begin{array} { l }
{ 3 . 8 = A _ { 0 } } \\
{ 5 . 1 5 = A _ { 0 } Q ^ { 7 } }
\end{array} \left\{\begin{array}{l}
3.8=A_{0} \\
5.15
\end{array}=3.8 a^{7} \quad Q=\sqrt{\frac{515}{388}}\right.\right.
\end{aligned}
$$

b) (2 pts) What does the model predict for the current minimum wage? (year 2012)

$$
\left.\begin{array}{l}
f(t)=3 \cdot 8\left(\sqrt[7]{\frac{515}{380}}\right) t \\
f(22)
\end{array}\right)
$$

c) (5 pts) In what year is the minimum wage expected to reach $\$ 100$ per hour, according to this model?

$$
\begin{aligned}
& 100=3.8 \sqrt[7]{\frac{515}{380}} t \quad \text { so } \tau_{\tau} \operatorname{trr}^{100}=\sqrt[7]{\frac{515}{380}} t \\
& \frac{100}{3.8} \\
& \ln \left(\frac{1000}{38}\right)=\ln \left(\sqrt[7]{\frac{515}{380}} t\right) \\
& t \approx \ln (1000 / 38) / \ln \left(\sqrt[7]{\frac{515}{380}}\right) \\
& t \approx 75.3 \text { in } 2065
\end{aligned}
$$

Interest
If a sum po is invested
at a (yearly) interest
rate r compounded yeeref, then the value of the investment
after t years is
$P(t)=P_{0}(1+r)^{t}$
NOTE: r is a decimal
so if interest is
$2 \% \quad r=0.02$

If the interest is compounded n times a yeer agter t years ure hele

$$
p(t)=p_{0}\left(1+\frac{r}{n}\right)^{n t}
$$

If the interest is compounded continuously after t yeers we have

$$
P(t)=P_{0} e^{r t}
$$

Final Sp 2012

Problem 3 (12 points)
The population of Arcadia increases by 8% every 10 years. The population of Brow triples every 120 years.
The two cities had equal populations of 10,000 residents each in the year 2000.
In what year will the city of Brow have twice as many residents as the city of Arcadia?

$$
\begin{aligned}
& \text { Let } t=0 \text { in } 2000 \\
& \text { Find formula for } A(t) \\
& \text { population of Arcedie. } \\
& \text { Method } 1 \text { Sk lp } \\
& A(t)=10,000(1+0.08) t / 10 \\
& \text { (like interest compounded } \\
& \text { ewers } \left.10 \text { years so } n=\frac{1}{10}\right) \\
& \text { Method } 2 \text { Read } \\
& (0,10000) \quad(10,10800) \\
& A(t)=A_{0} e^{t} \\
& \left\{\begin{array} { l }
{ 1 0 0 0 0 = A 0 } \\
{ 1 0 8 0 0 = A 0 }
\end{array} A _ { 0 } ^ { 1 0 } \left\{\begin{array}{l}
10000=A 0 \\
\frac{10800}{1000}=2
\end{array}\right.\right.
\end{aligned}
$$

$$
A(t)=10000(\sqrt[10]{1.08}) t
$$

Find a formuPa
for $B(t)$ (the population

$$
\begin{aligned}
& \text { of } B \operatorname{rom}) ; B(t)=B_{0} b^{t} \\
& A 0=10,000 \\
& 120=\frac{\ln 3}{\ln a}, \ln \alpha=\frac{\ln 3}{120} \\
& Q=e^{\frac{\ln 3}{120}}=e^{\ln 3 \cdot \frac{1}{120}}= \\
& =3 / 120=\sqrt[120]{3} \sqrt[120]{3}) t
\end{aligned}
$$

Note $B(t)$ joes through $(0,10,000)(120,30,000)$

We need $B(t)=2 A(t)$

$$
\begin{aligned}
& 1000 \sqrt[120]{3}^{t}=2 \cdot 10000 \sqrt[10]{1.08} t \\
& \left.\frac{\sqrt[120]{3}}{\sqrt[10]{t}} \sqrt{\sqrt[1.08]{t}}\right)^{t}=2 \\
& \left(\frac{\sqrt[12]{3}}{\sqrt[10]{1.08}}\right)^{\ln 2} \\
& t=\frac{123}{3}\left(\frac{\sqrt[1 n]{10}}{1.08}\right)
\end{aligned}
$$

