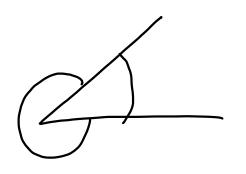

Lesson 17

Read Chapter 15

Angles. Arclenght, Area of Wedges

Suppose g(x) has domain $-5 \le x \le 6$ and range $1 \le y \le 10$ What are the domain and range of 4g(x) - 5?

①
$$y = 4.9(x)$$
 verticel
sceling by a factor of 4
dilate rectangle


(2)
$$y = 4.9(x)-5$$
. Howe rectangle down $-5 \le x \le 6$

Starting from y=g(x)

horizontel scaling by a factor of $4: y = 9(\frac{x}{4})$

verticel sceling of a factor of 4: y=4g(x) or $\frac{y}{4}=g(x)$

An angle is the part of the plane in between two half lines starting at the same points. Angles are measured in degrees or radians. Certain precalculus/calculus formulas assume angles are measured in radians, so we often use radians as units.

$$360 \deg = 2\pi \operatorname{rad}$$

$$180~\deg=\pi~\mathrm{rad}$$

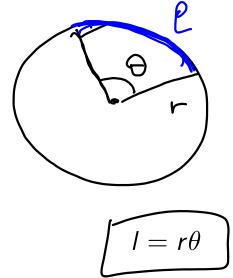
90 deg =
$$\frac{\pi}{2}$$
 rad

60 deg =
$$\frac{\pi}{3}$$
 rad

45 deg =
$$\frac{\pi}{4}$$
 rad

30 deg =
$$\frac{\pi}{6}$$
 rad

$$x \deg = y \frac{360}{2\pi} \operatorname{rad}$$


$$y \operatorname{rad} = x \frac{2\pi}{360} \operatorname{deg}$$

If we measure angles in degrees , then $\frac{1}{60}$ of a degree is a minute and $\frac{1}{60}$ of a minute is a second. Convert 0.3 rad into deg, min, second.


$$0.3 \cdot \frac{360}{2\pi} \approx 17.1887 \deg$$

Arclength

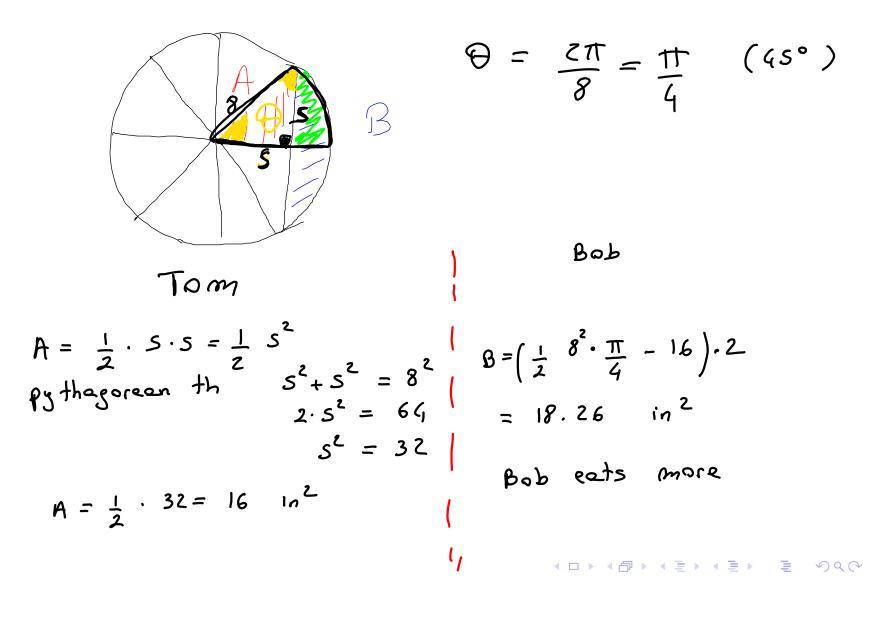
 θ measured in radians

$$\frac{2\pi r}{2\pi} = \frac{\ell}{\theta} ; \quad r\theta = \ell$$
in degrees:
$$\frac{2\pi r}{360} = \frac{\ell}{\theta} ; \quad \frac{2\pi}{360} \theta \cdot r = \ell$$

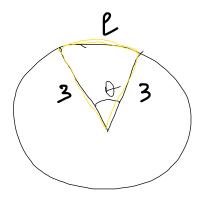
$$\frac{\ell}{\Gamma} = \theta \quad (9.3)$$

dimensionless unit

Area of wedge


$$A = \frac{1}{2}r^2\theta$$

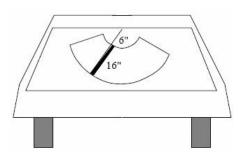
 θ measured in radians

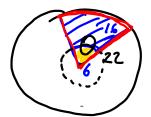

$$\frac{\mathcal{F}^2}{2\mathcal{F}} = \frac{A}{\theta}$$

$$\frac{1}{2}r^2\theta = A$$

A pizza of radius 8 in is divided into 8 equal slices. Tom eats A and Bob eats B. Who eats more ?

Given that θ is $\frac{1}{6}$ and the circle has radius r=3, what is the perimeter of the sector ?


$$\ell = 3 \cdot \frac{\pi}{6} = \frac{\pi}{2}$$
perimeter $3 + 3 + \frac{\pi}{2}$


Loveless Fall 2009

3. (12 points)

The rear window wiper blade on a station wagon has a length of 16 inches. The wiper blade is mounted

(a) on a 22 inch arm, 6 inches from the pivot point (as illustrated). If the wiper turns through an angle of 105°, how much area is swept clean?

$$\frac{105 \cdot 2\pi}{360} = 0$$

(OLM(a) 32 + and ((f(x)) = 9x 10, find the value of

$$\frac{1}{2} (22)^{2} \cdot \frac{105 \cdot 2\pi}{360} - \frac{1}{2} 6^{2} \cdot \frac{105 \cdot 2\pi}{360} = \frac{413}{3} \pi$$

(c) Find the inverse function of $f(x) = \frac{(\sqrt{x} - 1)^2}{3}$ when restricted to the domain $0 \le x \le 1$.

A rotating sprinkle reaches 10 m far and completes a full revolution in 5 min. How much area does it irrigate in 2 min? How long does it take the sprinkle to irrigate 50 square meters?

when
$$t=2$$
 $\theta=\frac{2\pi}{5}$. 2 $A=\frac{1}{2}$ $\frac{10^2}{5}$ $\frac{2\pi}{6}$ $\frac{1}{2}$ $\frac{2\pi}{5}$ $\frac{1}{2}$ $\frac{10^2}{5}$ $\frac{2\pi}{5}$ $\frac{1}{2}$ $\frac{10^2}{5}$ $\frac{2\pi}{5}$ $\frac{2\pi}{5}$