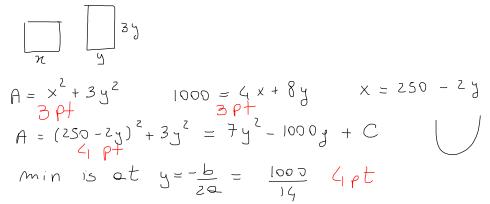
Math 120 (Pezzoli)		
Fall 2014		
Midterm #2		

Name _____

Section:

Instructions:

- Your exam contains 3 problems.
- Your exam should contain 5 pages; please make sure you have a complete exam.
- Box in your final answer when appropriate.
- ullet Unless stated otherwise, you \mathbf{MUST} show work for credit. No credit for answers only. If in doubt, ask for clarification.
- Your work needs to be neat and legible.
- ullet You are allowed one 8.5 imes 11 sheet of notes (both sides). The only calculator allowed is Texas Instruments ti 30x iis.
- Round off your answers to 2 decimal places, unless you are asked for exact answers.


Problem #1 (15 pts) ______

Problem #2 (15 pts) _____

Problem #3 (15 pts)

TOTAL (45 pts) _____

1. You have 1000 meters of fencing with which to build two enclosures. One enclosure will be a square, and the other will be a rectangle that is 3 times as long as it is wide. What should the dimensions of the rectangular enclosure be in order to minimize the combined area of the two enclosures?

Dimensions:

$$y = \frac{1000}{14} \approx 71.43 \text{ m}$$
 $3y = \frac{3000}{14} \approx 214.29 \text{ m}$

2. Weeds are taking over Mary 's garden. 30 days ago she noticed 5 dandelions and 3 thistle weeds. Today she counted 20 dandelions. Assuming that the number of dandelions and thistle in Mary's garden grows exponentially, and that the number or thistle doubles every two weeks (14 days), when will there be twice as many thistle than dandelions in the garden? Give the answer in days from today (for example 230 days from today).

garden? Give the answer in days from today (for example 230 days from today).

$$D(t) = A_0 \text{ at} \quad \text{going through} \quad (-30, 5) \quad (0, 7.0)$$

$$A_0 = 20 \quad 5 = 20 \quad \text{a}^{-30} \quad \text{a}^{-30} = 4 \quad \text{a}^{-30} \sqrt{4} = \sqrt[5]{2} \quad \approx 1.047294$$

$$D(t) = 20 \left(\frac{3\sqrt{4}}{4}\right)^{\frac{1}{4}} \quad 5 \text{ pt}$$

$$T(t) = B_0 L^{\frac{1}{4}} \quad \text{we know} \quad 14 = \frac{\ln^2}{\ln b}, \quad \ln b = \frac{\ln^2}{14}, \quad b = e^{\frac{\ln^2}{14}} = \sqrt[4]{2} \approx 1.050757$$

$$T(t) = B_0 L^{\frac{1}{4}} \quad \text{we know} \quad 14 = \frac{\ln^2}{\ln b}, \quad \ln b = \frac{\ln^2}{14}, \quad b = e^{\frac{\ln^2}{14}} = \sqrt[4]{2} \approx 1.050757$$

$$T(t) = B_0 L^{\frac{1}{4}} \quad \text{we know} \quad 14 = \frac{\ln^2}{\ln b}, \quad \ln b = \frac{\ln^2}{14}, \quad b = e^{\frac{\ln^2}{14}} = \sqrt[4]{2} \approx 1.050757$$

$$T(t) = B_0 L^{\frac{1}{4}} \quad \text{we know} \quad 14 = \frac{\ln^2}{\ln b}, \quad \ln b = \frac{\ln^2}{14}, \quad b = e^{\frac{\ln^2}{14}} = \sqrt[4]{2} \approx 1.050757$$

$$= 13.2491 \quad \text{So} \quad T(t) = 3(\frac{14}{14})^{\frac{1}{2}})^{\frac{30}{14}} = \sqrt[4]{2} \quad \text{hoso} \quad$$

3. Water is filling a trough. The width of the water, in feet, at time t, in hours is given by

$$f(t) = 2\sqrt{25 - (-5 + \frac{t}{3})^2}$$

the domain of f(t) is $0 \le t \le 15$ and the range of f(t) is $0 \le w \le 10$.

(a) Give the domain and range of $f^{-1}(w)$.

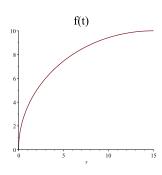
DOMAIN: 0 5 W 5 10 2 pt

RANGE: 0 4 4 4 15 2 Pt

(b) Find a formula for $f^{-1}(w)$, the inverse function of f(t).

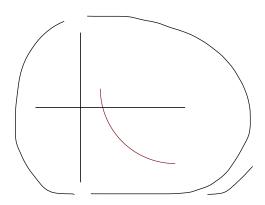
 $w = 2\sqrt{25 - \left(-5 + \frac{t}{3}\right)^2}, \frac{w^2}{\sqrt{25 - \left(-5 + \frac{t}{3}\right)^2}}$ $\left(-5 + \frac{t}{3}\right)^2 - 25 - \frac{\omega^2}{4} \qquad \left(-5 + \frac{t}{3}\right) = \frac{1}{4} \qquad \sqrt{25 - \frac{\omega^2}{4}}$

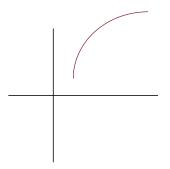
 $t = 15 - 3\sqrt{25 - \frac{\omega^2}{6}}$, choose - Since $t \leq 15$

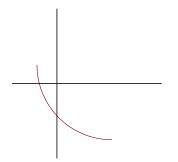

- (c) calculate $f^{-1}(4)$ exactly. $\geq p \leftarrow$
- (d) Explain in words what $f^{-1}(4)$ represents \angle

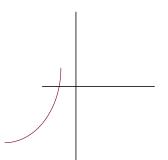
t = 125 hrs is the time when

+ rough is lifeet


the width of the water in the


(continued from the previuos page) The graph of f(t) is given below.





Which of the following graphs is the graph of -2f(3t-4)+5 ? Circle the correct graph.

