Continuity and Uniform Continuity

Below I stands for any one of the intervals $(a, b),[a, b),(a, b],[a, b],(a, \infty),[a, \infty),(\infty, b),(-\infty, b]$, $(-\infty, \infty)=\mathbf{R}$. Let f be a function defined on an interval I.

Definition of Continuity on an Interval: The function f is continuous on I if it is continuous at every c in I. So,
For every c in I, for every $\epsilon>0$, there exists a $\delta>0$ such that

$$
|x-c|<\delta \quad \text { implies } \quad|f(x)-f(c)|<\epsilon
$$

If c is one of the endpoints of the interval, then we only check left or right continuity so $|x-c|<\delta$ is replaced by $0<x-c<\delta$ or $0<c-x<\delta$. Here, the δ may (and probably will) depend BOTH on c and ϵ.

Definition of Uniform continuity on an Interval The function f is uniformly continuous on I if for every $\epsilon>0$, there exists a $\delta>0$ such that

$$
|x-y|<\delta \quad \text { implies } \quad|f(x)-f(y)|<\epsilon
$$

Here, the δ may (and probably will) depend on ϵ but NOT on the points.
Uniform continiuty is stronger than continuity, that is,
Proposition 1 If f is uniformly continuous on an interval I, then it is continuous on I.
Proof: Assume f is uniformly continuous on an interval I.
To prove f is continuous at every point on I, let $c \in I$ be an arbitrary point.
Let $\epsilon>0$ be arbitrary.
Let δ be the same number you get from the definition of uniform continuity. Assume $|x-c|<\delta$.
Then, again from the definition of uniform continuity, $|f(x)-f(c)|<\epsilon$.
Therefore, f is continuous at c.
Since c was arbitrary, f is continuous everywhere on I.
The idea of the proof is basically that the δ you get for uniform continuity works for (regular) continuity at any point c, but not vice versa, since the δ you get for regular continuity may depend on the point c. When the interval is of the form $[a, b]$, uniform continuity and continuty are the same: f is continuous on $[a, b]$ if and only if f is uniformly continuous on $[a, b]$. This result is a combination of Proposition 1 above with Theorem B.4.4 in the book. I will leave you to read the proof of Theorem B.4.4 on your own. It is optional. However, when the interval is not of the form $[a, b]$, the two are not necessarily the same. Below is an example of a function on an interval I which is continuous on I but not uniformly continuous on I.

Below are two proofs. For the first proof, write an explanation of why and how I wrote that particular line: Either as a necessary part of the proof (starting the proof, starting an implication proof, etc.) or explain how that particular line follows from a line above (which one?) using what algebra/theorem/rule. For the second proof, finish it by coming up with the contradiction. The contradiction must very VERY clear like $0=1$ or $1<1$. You wil do two similar ones as part of your homework.

Proposition 2: The function $f(x)=\frac{1}{x}$ is continous on the interval $(0,1)$. That is, for every c in $(0,1)$, f is continuous at c.

Proof: Let c be any number in $(0,1)$.
Let $\epsilon>0$ be given.
Define $\delta=\min \left\{\frac{c}{2}, \frac{c^{2} \epsilon}{2}\right\}$.
Assume $|x-c|<\delta$.
First, $-\frac{c}{2}<x-c<\frac{c}{2}$,
so $0<\frac{c}{2}<x$
which implies $0<\frac{1}{x}<\frac{2}{c}$.
Now,

$$
\begin{aligned}
\left|\frac{1}{x}-\frac{1}{c}\right| & =\left|\frac{c-x}{c x}\right| \\
& =\frac{|x-c|}{c x} \\
& <\frac{1}{c} \cdot \frac{2}{c} \cdot|x-c| \\
& <\frac{2}{c^{2}} \cdot \frac{c^{2} \epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|x-c|<\delta$ implies $|f(x)-f(c)|<\epsilon$ and hence f is continuous at c.
Since $c \in(0,1)$ was arbitrary,
f is continuous on $(0,1)$.
Proposition 3: The function $f(x)=\frac{1}{x}$ is not uniformly continuous on the interval $(0,1)$.

Proof:

For a contradiction, assume $f(x)$ is uniformly continuous on $(0,1)$.
So, for every $\epsilon>0$, there exists a $\delta>0$ such that

$$
|x-y|<\delta \quad \text { implies } \quad|f(x)-f(y)|<\epsilon .
$$

Now, let $\epsilon=\frac{1}{2}$. Then, there exists a $\delta>0$ such that

$$
|x-y|<\delta \quad \text { implies } \quad|f(x)-f(y)|<\frac{1}{2} .
$$

Now, find a number $M>1$ such that $\frac{1}{M}<\delta$. Let $x=\frac{1}{M}$ and $y=\frac{1}{M+1}$. Then,

$$
|x-y|=\left|\frac{1}{M}-\frac{1}{M+1}\right|=\left|\frac{1}{M(M+1)}\right|<\frac{1}{M}<\delta
$$

But,
-
.
.

This is a contradiction. Therefore, f is not uniformly continuous on $(0,1)$.

