Continuity and Uniform Continuity

Below I stands for any one of the intervals (a, b), [a, b), (a, b], [a, b], (a, ∞) , $[a, \infty)$, (∞, b) , $(-\infty, b]$, $(-\infty, \infty) = \mathbf{R}$. Let f be a function defined on an interval I.

Definition of Continuity on an Interval: The function f is continuous on I if it is continuous at every c in I. So,

For every c in I, for every $\epsilon > 0$, there exists a $\delta > 0$ such that

 $|x-c| < \delta$ implies $|f(x) - f(c)| < \epsilon$.

If c is one of the endpoints of the interval, then we only check left or right continuity so $|x-c| < \delta$ is replaced by $0 < x - c < \delta$ or $0 < c - x < \delta$. Here, the δ may (and probably will) depend BOTH on c and ϵ .

Definition of Uniform continuity on an Interval The function f is uniformly continuous on I if for every $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|x-y| < \delta$$
 implies $|f(x) - f(y)| < \epsilon$

Here, the δ may (and probably will) depend on ϵ but NOT on the points.

Uniform continuity is stronger than continuity, that is,

Proposition 1 If f is uniformly continuous on an interval I, then it is continuous on I.

Proof: Assume f is uniformly continuous on an interval I. To prove f is continuous at every point on I, let $c \in I$ be an arbitrary point. Let $\epsilon > 0$ be arbitrary. Let δ be the same number you get from the definition of uniform continuity. Assume $|x - c| < \delta$. Then, again from the definition of uniform continuity, $|f(x) - f(c)| < \epsilon$. Therefore, f is continuous at c. Since c was arbitrary, f is continuous everywhere on I. The idea of the proof is basically that the δ you get for uniform continuity works for (regular) continuity at any point c, but not vice versa, since the δ you get for regular continuity may depend on the point c. When the interval is of the form [a, b], uniform continuity and continuity are the same: f is continuous on

When the interval is of the form [a, b], uniform continuity and continuty are the same: f is continuous on [a, b] if and only if f is uniformly continuous on [a, b]. This result is a combination of **Proposition 1** above with **Theorem B.4.4** in the book. I will leave you to read the proof of **Theorem B.4.4** on your own. It is optional. However, when the interval is not of the form [a, b], the two are not necessarily the same. Below is an example of a function on an interval I which is continuous on I but not uniformly continuous on I.

Below are two proofs. For the first proof, write an explanation of why and how I wrote that particular line: Either as a necessary part of the proof (starting the proof, starting an implication proof, etc.) or explain how that particular line follows from a line above (which one?) using what algebra/theorem/rule. For the second proof, finish it by coming up with the contradiction. The contradiction must very VERY clear like 0 = 1 or 1 < 1. You will do two similar ones as part of your homework.

Proposition 2: The function $f(x) = \frac{1}{x}$ is continuous on the interval (0,1). That is, for every c in (0,1), f is continuous at c.

Proof: Let c be any number in (0, 1).

Let $\epsilon > 0$ be given. Define $\delta = \min\left\{\frac{c}{2}, \frac{c^2\epsilon}{2}\right\}$. Assume $|x - c| < \delta$. First, $-\frac{c}{2} < x - c < \frac{c}{2}$, so $0 < \frac{c}{2} < x$ which implies $0 < \frac{1}{x} < \frac{2}{c}$. Now, $\left|\frac{1}{x} - \frac{1}{c}\right| = \left|\frac{c - x}{cx}\right|$

$$= \frac{|x-c|}{cx}$$

$$< \frac{1}{c} \cdot \frac{2}{c} \cdot |x-c|$$

$$< \frac{2}{c^2} \cdot \frac{c^2 \epsilon}{2}$$

 $= \epsilon$. Therefore, $|x - c| < \delta$ implies $|f(x) - f(c)| < \epsilon$ and hence f is continuous at c. Since $c \in (0, 1)$ was arbitrary, f is continuous on (0, 1).

Proposition 3: The function $f(x) = \frac{1}{x}$ is not uniformly continuous on the interval (0, 1).

Proof:

For a contradiction, assume f(x) is uniformly continuous on (0, 1). So, for every $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|x-y| < \delta$$
 implies $|f(x) - f(y)| < \epsilon$.

Now, let $\epsilon = \frac{1}{2}$. Then, there exists a $\delta > 0$ such that

$$|x-y| < \delta$$
 implies $|f(x) - f(y)| < \frac{1}{2}$

Now, find a number M > 1 such that $\frac{1}{M} < \delta$. Let $x = \frac{1}{M}$ and $y = \frac{1}{M+1}$. Then,

$$|x-y| = \left|\frac{1}{M} - \frac{1}{M+1}\right| = \left|\frac{1}{M(M+1)}\right| < \frac{1}{M} < \delta$$

But,

This is a contradiction. Therefore, f is not uniformly continuous on (0, 1).