
Continuity and Uniform Continuity

Below I stands for any one of the intervals (a, b), [a, b), (a, b], [a, b], (a,∞), [a,∞), (∞, b), (−∞, b],
(−∞,∞) = R. Let f be a function defined on an interval I.

Definition of Continuity on an Interval: The function f is continuous on I if it is continuous at
every c in I. So,
For every c in I, for every ε > 0, there exists a δ > 0 such that

|x− c| < δ implies |f(x)− f(c)| < ε.

If c is one of the endpoints of the interval, then we only check left or right continuity so |x−c| < δ is replaced
by 0 < x− c < δ or 0 < c− x < δ. Here, the δ may (and probably will) depend BOTH on c and ε.

Definition of Uniform continuity on an Interval The function f is uniformly continuous on I if for
every ε > 0, there exists a δ > 0 such that

|x− y| < δ implies |f(x)− f(y)| < ε.

Here, the δ may (and probably will) depend on ε but NOT on the points.

Uniform continiuty is stronger than continuity, that is,

Proposition 1 If f is uniformly continuous on an interval I, then it is continuous on I.

Proof: Assume f is uniformly continuous on an interval I.
To prove f is continuous at every point on I, let c ∈ I be an arbitrary point.
Let ε > 0 be arbitrary.
Let δ be the same number you get from the definition of uniform continuity.
Assume |x− c| < δ.
Then, again from the definition of uniform continuity, |f(x)− f(c)| < ε.
Therefore, f is continuous at c.
Since c was arbitrary, f is continuous everywhere on I.

The idea of the proof is basically that the δ you get for uniform continuity works for (regular) continuity
at any point c, but not vice versa, since the δ you get for regular continuity may depend on the point c.
When the interval is of the form [a, b], uniform continuity and continuty are the same: f is continuous on
[a, b] if and only if f is uniformly continuous on [a, b]. This result is a combination of Proposition 1 above
with Theorem B.4.4 in the book. I will leave you to read the proof of Theorem B.4.4 on your own. It is
optional. However, when the interval is not of the form [a, b], the two are not necessarily the same. Below
is an example of a function on an interval I which is continuous on I but not uniformly continuous on I.

Below are two proofs. For the first proof, write an explanation of why and how I wrote that particular
line: Either as a necessary part of the proof (starting the proof, starting an implication proof, etc.) or
explain how that particular line follows from a line above (which one?) using what algebra/theorem/rule.
For the second proof, finish it by coming up with the contradiction. The contradiction must very VERY
clear like 0 = 1 or 1 < 1. You wil do two similar ones as part of your homework.

1



Proposition 2: The function f(x) =
1

x
is continous on the interval (0, 1). That is, for every c in (0, 1),

f is continuous at c.

Proof: Let c be any number in (0, 1).
Let ε > 0 be given.

Define δ = min
{
c
2 ,

c2ε
2

}
.

Assume |x− c| < δ.

First, − c
2
< x− c < c

2
,

so 0 <
c

2
< x

which implies 0 <
1

x
<

2

c
.

Now,∣∣∣∣ 1x − 1

c

∣∣∣∣ =

∣∣∣∣c− xcx

∣∣∣∣
=

|x− c|
cx

<
1

c
· 2

c
· |x− c|

<
2

c2
· c

2ε

2

= ε.
Therefore, |x− c| < δ implies |f(x)− f(c)| < ε and hence f is continuous at c.
Since c ∈ (0, 1) was arbitrary,
f is continuous on (0, 1).

Proposition 3: The function f(x) =
1

x
is not uniformly continuous on the interval (0, 1).

Proof:
For a contradiction, assume f(x) is uniformly continuous on (0, 1).

So, for every ε > 0, there exists a δ > 0 such that

|x− y| < δ implies |f(x)− f(y)| < ε.

Now, let ε = 1
2 . Then, there exists a δ > 0 such that

|x− y| < δ implies |f(x)− f(y)| < 1

2
.

Now, find a number M > 1 such that 1
M < δ. Let x = 1

M and y = 1
M+1 . Then,

|x− y| =
∣∣∣∣ 1

M
− 1

M + 1

∣∣∣∣ =

∣∣∣∣ 1

M(M + 1)

∣∣∣∣ < 1

M
< δ

But,
.
.
.
.
.
.
This is a contradiction. Therefore, f is not uniformly continuous on (0, 1).
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